Философия и методология науки

Под редакцией В. И. Купцова

Рекомендовано Государственным комитетом РФ по высшему образованию в качестве учебного пособия для студентов высших учебных заведений

АСПЕKT ПРЕСС
Москва
1996
Содержание

РАЗДЕЛ I

I. Образ науки

1. Что такое наука? .. 8
2. Цель науки ... 8
3. Что производит наука? .. 9
4. Наука как процесс познания 15
5. Знание о чем? ... 23
6. Наука как социальный институт 24
7. Перспективы развития науки 29

II. Проблема возникновения науки

1. Дата и место рождения науки 37
2. Миф. Технология. Наука 41
3. Проблема «европоцентризма» 44
4. На гребне «социальной волны» 47
5. Из плена времени ... 50

III. «Большая наука»

1. Особенности современной науки 53
2. НАУКА И ОБЩЕСТВО .. 56

IV. ОБЩЕСТВО И НАУЧНО-ТЕХНИЧЕСКИЙ ПРОГРЕСС

1. ТЕХНОЛОГИЧЕСКИЕ РЕВОЛЮЦИИ В ИСТОРИИ ЧЕЛОВЕЧЕСТВА .. 61
2. ТРИ ТИПА ОБЩЕСТВА .. 62
3. КОРЕННЫЕ ИЗМЕНЕНИЯ В «ПЕРВОЙ ПРИРОДЕ» .. 63
4. РАДИКАЛЬНЫЕ ПРЕОБРАЗОВАНИЯ ВО «ВТОРОЙ ПРИРОДЕ» .. 65
5. ВЛИЯНИЕ РАЗВИТИЯ ТЕХНИКИ И ТЕХНОЛОГИЙ НА ЖИЗНЬ ЛЮДЕЙ ... 67

V. ВЛИЯНИЕ НАУКИ НА РЕЛИГИОЗНОЕ ВОСПРИЯТИЕ МИРА

1. ОТНОШЕНИЕ К РЕЛИГИИ В ВЕК НТП 72
2. ПОТРЕБНОСТЬ В ДИАЛОГЕ 76
3. ТРУДНОСТИ ВО ВЗАИМООТНОШЕНИЯХ 77
4. РАЗВИТИЕ ПРЕДСТАВЛЕННИЙ О МИРЕ И ИЗМЕНЕНИЕ «МОДЕЛЕЙ» БОГА .. 80
5. СОВРЕМЕННЫЕ ТЕОЛОГИЧЕСКИЕ КОНЦЕПЦИИ РАЗВИТИЯ МИРА И РОЛИ БОГА В НЕМ 81
6. ВЕРОЯТНОСТНЫЙ МИР И НОВЫЕ «МОДЕЛИ» БОГА 84
7. ВОЗМОЖНОСТИ ИНТЕГРАЦИИ 89
РАЗДЕЛ II .. 92

VI. НАУКА И ФИЛОСОФИЯ .. 93

1. ПОЗИЦИЯ МЕХАНИСТОВ .. 95
2. ВЗГЛЯДЫ ПОЗИТИВИСТОВ .. 97
3. «КОПЕРНИКАНСКИЙ ПОВОРОТ» В ФИЛОСОФИИ 102
4. ФИЛОСОФИЯ КАК АНАЛИТИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ .. 106
5. ПРОТИВОСТОЯНИЕ ПОЗИТИВИЗМА ... 109

VII. СТРУКТУРА НАУЧНОГО ЗНАНИЯ ... 111

1. ЭМПИРИЧЕСКИЙ И ТЕОРЕТИЧЕСКИЙ УРОВНІ ЗНАНИЯ ... 112
2. ФИЛОСОФСКІЕ ОСНОВАНИЯ НАУКИ .. 115
3. ВЗАИМОСВЯЗЬ РАЗЛИЧНЫХ УРОВНЕЙ ЗНАНИЯ .. 120
4. СТРУКТУРА НАУЧНОЙ ДИСЦИПЛИНИ .. 121
5. ХАРАКТЕР НАУЧНОГО ЗНАНИЯ И ЕГО ФУНКЦІЇ 127

VIII. ФУНКЦІЇ НАУЧНОГО ИССЛЕДОВАНИЯ ... 129

1. «ЗНАТЬ, ЧТОБЫ ПРЕДВИДЕТЬ» ... 129
2. Э. МАХ О СТАТУСЕ ОПИСАНИЯ В НАУКЕ .. 130
3. «ОСНОВНАЯ МОДЕЛЬ НАУЧНОГО ОБЪЯСНЕНИЯ» 132
4. ЯВЛЯЕТСЯ ЛИ ПРОЦЕСС ОБЪЯСНЕНИЯ ДЕДУКТИВНЫМ?.. 135
5. КАКОЙ ВИД ОБЪЯСНЕНИЯ ГЛАВНЕЕ?... 137
6. ПОЧЕМУ КОЛОКОЛА ЗВОНЯТ НА ПАСХУ? .. 139
7. ОБЪЯСНЕНИЕ БЕЗ ПОНИМАНИЯ. ПОНИМАНИЕ БЕЗ ОБЪЯСНЕНИЯ .. 140
8. И ВСЕ-ТАКИ ПОНИМАНИЕ! .. 143
9. «ОСНОВНАЯ МОДЕЛЬ НАУЧНОГО ПРЕДВИДЕНИЯ» 147
10. СТРУКТУРА ПРОЦЕССА ПРЕДВИДЕНИЯ .. 149
11. ХАРАКТЕР ПРОГНОЗА ... 150
12. ОСНОВАНИЯ ПРЕДВИДЕНИЯ ... 151

IX. ОСОБЕННОСТИ ПРОЦЕССА НАУЧНОГО ПОЗНАНИЯ 153

1. В ПОИСКАХ ЛОГИКИ ОТКРЫТИЯ .. 153
2. КРИТИЧЕСКИЕ АРГУМЕНТЫ ... 160
3. ОТ ЛОГИКИ ОТКРЫТИЯ К ЛОГИКЕ ПОДТВЕРЖДЕНИЯ 164
4. ФАЛЬСИФИЦИРУЕМОСТЬ КАК КРИТЕРИЙ НАУЧНОСТИ 166
5. КОНЦЕПЦІЯ «ТРЕТЬЕГО МИРА» К. ПОППЕРА 168
6. НАУЧНОЕ ПРЕДВИДЕНИЕ, ПАРАДИГМЫ И НАУЧНЫЕ СООБЩЕСТВА 172
7. МЕТОДОЛОГИЯ ИССЛЕДОВАТЕЛЬСКИХ ПРОГРАММ 175

X. ТРАДИЦИИ И НОВАЦІЇ В РАЗВИТИЙ НАУКІ .. 180

1. ТРАДИЦІЯ НАУКИ И ВИДЫ НАУЧНЫХ ТРАДИЦІЇ 181
2. ТРАДІЦІЇ И НОВАЦІЇ ... 192
3. НОВАЦІИ И ВЗАИМОДЕЙСТВИЕ ТРАДИЦИЙ ... 199
XI. НАУЧНЫЕ РЕВОЛЮЦИИ ... 211
1. НОВЫЕ ТЕОРЕТИЧЕСКИЕ Концепции .. 211
2. НОВЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ .. 214
3. ОТКРЫТИЕ НОВЫХ «МИРОВ» .. 217
4. РЕВОЛЮЦИИ И ТРАДИЦИИ ... 221

XII. ПРИРОДА ФУНДАМЕНТАЛЬНЫХ НАУЧНЫХ ОТКРЫТИЙ................................. 223
1. ДВА РОДА ОТКРЫТИЙ ... 223
2. ИСТОРИЧЕСКАЯ ОБУСЛОВЛЕННОСТЬ ФУНДАМЕНТАЛЬНЫХ ОТКРЫТИЙ 226
3. ГЕЛИОЦЕНТРИЧЕСКАЯ СИСТЕМА КОПЕРНИКА 228
4. ГЕОМЕТРИЯ ЛОБАЧЕВСКОГО .. 231
5. ОТКРЫТИЕ Г. МЕНДЕЛЯ ... 238

XIII. РЕДУКЦИОНИЗМ: ЕГО ВОЗМОЖНОСТИ И ГРАНИЦЫ 244
1. СТРЕМЛЕНИЕ К СИНТЕЗУ ... 244
2. УСПЕХИ РЕДУКЦИОНИЗМА ... 245
3. КАК ОБОСНОВЫВАЕТСЯ РЕДУКЦИОНИЗМ? 248
4. АРГУМЕНТЫ ПРОТИВ РЕДУКЦИОНИЗМА 248
5. КОНТУРЫ СОВРЕМЕННОЙ КАРТИНЫ МИРА 257
6. ЕДИНСТВО НАУКИ И ЕЕ МНОГООБРАЗИЕ 260

XIV. ИДЕАЛЫ НАУЧНОСТИ ... 261
1. ЧТО ТАКОЕ ИДЕАЛ НАУЧНОСТИ? .. 261
2. ОСНОВАНИЯ КЛАССИЧЕСКИХ ПРЕДСТАВЛЕННИЙ О НАУКЕ 263
3. ФОРМЫ КЛАССИЧЕСКОГО ИДЕАЛА ... 268
4. ОСНОВНЫЕ НАПРАВЛЕНИЯ КРИТИКИ 277
5. В ПОИСКАХ АЛЬТЕРНАТИВ ... 289

РАЗДЕЛ III .. 296

XV. СТАТУС И ПРОБЛЕМЫ ИСТОРИИ НАУКИ ... 297
1. ЗАЧЕМ НУЖНА ИСТОРИЯ НАУКИ? .. 297
2. ИСТОРИЯ НАУКИ ТОЖЕ ИМЕЕТ СВОЮ ИСТОРИЮ 298
3. «КАК ЭТО БЫЛО?» ... 302
4. «ПРЕЗЕНТИЗМ» И «АНТИКВАРИЗМ» - МЕТОДОЛОГИЧЕСКАЯ ДИЛЕММА ИСТОРИКО-НАУЧНОГО ПОЗНАНИЯ ... 304
5. ОТКРЫЛ ЛИ КОЛУМБ АМЕРИКУ? .. 305
6. «КИММЕРИЙСКИЕ ТЕНИ» В ИСТОРИИ ПОЗНАНИЯ 310
7. ТОЧКА ЗРЕНИЯ КОЛЛИНГВУДА .. 312
8. ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ В ИСТОРИКО-НАУЧНОМ ИССЛЕДОВАНИИ 315
9. ФИЛОСОФИЯ НАУКИ И ИСТОРИЯ НАУКИ 318
XVI. СОЦИАЛЬНЫЕ АСПЕКТЫ ИСТОРИИ НАУКИ 323
1. ДИСКУССИИ ИНТЕРАЛИСТОВ И ЭКСТЕРАЛИСТОВ 323
2. ОБЩЕЕ ОСНОВАНИЕ В ПОЗИЦИЯХ МЕТОДОЛОГИЧЕСКИХ ОППОНЕНТОВ ... 325
3. ЕСТЕСТВЕННО-НАУЧНОЕ ТЕОРЕТИЗИРОВАНИЕ И ПОНЯТИЕ СОЦИАЛЬНОСТИ .. 328
4. МЕХАНИЗМ ДЕЙСТВИЯ СОЦИАЛЬНОГО ЗАКАЗА 330
5. ФИЛОСОФИЯ В ИСТОРИИ НАУЧНЫХ ИДЕЙ 331
6. РАЗНООБРАЗИЕ ФОРМ СОЦИАЛЬНЫХ ОТНОШЕНИЙ В ИСТОРИИ НАУКИ ... 335
7. МИКРОСОЦИОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ 338
8. НАУЧНОЕ СООБЩЕСТВО .. 341
XVII. ОБЩИЕ МОДЕЛИ ИСТОРИИ НАУКИ 345
1. КУМУЛЯТИВИСТСКАЯ МОДЕЛЬ .. 346
2. НАУЧНЫЕ РЕВОЛЮЦИИ В ИСТОРИИ НАУКИ 354
3. «КЕЙС СТАДИС» КАК МЕТОД ИССЛЕДОВАНИЯ 369
РАЗДЕЛ IV ... 381
XVIII. НОРМЫ И ЦЕННОСТИ НАУЧНОГО СООБЩЕСТВА 382
1. НОРМЫ И ЦЕННОСТИ НАУКИ ... 382
2. НАУКА И ЦЕННОСТИ ОБЩЕСТВА 385
3. НОРМАТИВНО-ЦЕННОСТНАЯ СИСТЕМА НАУЧНОГО СООБЩЕСТВА ... 389
4. УЧЕНЫЙ И НАУЧНОЕ СООБЩЕСТВО 393
5. АВТОНОМИЯ НАУКИ ... 395
XIX. ИНСТИТУАЛИЗАЦИЯ НАУКИ В ЦЕННОСТНОМ ИЗМЕРЕНИИ ... 399
1. СТАНОВЛЕНИЕ НАУКИ КАК СОЦИАЛЬНОГО ИНСТИТУТА 399
2. НАУКА И ИДЕОЛОГИЯ ПРОСВЕЩЕНИЯ 402
3. НАУКА, ТЕХНИКА, ПРОИЗВОДСТВО 404
4. ПРЕВРАЩЕНИЕ НАУКИ В ПРОФЕССИОНАЛЬНУЮ СФЕРУ
ДЕЯТЕЛЬНОСТИ .. 408
5. БРЕМЯ СОЦИАЛЬНОЙ ОТВЕТСТВЕННОСТИ 412
XX. ЭТИКА НАУКИ И ОТВЕТСТВЕННОСТЬ УЧЕНОГО 416
1. ЗНАНИЕ ЧЕЛОВЕКА И ДЛЯ ЧЕЛОВЕКА 416
2. НОРМЫ НАУЧНОЙ ДЕЯТЕЛЬНОСТИ 418
3. ЭТОС НАУКИ .. 421
4. СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ УЧЕНОГО 423
5. ОБЪЕКТИВНАЯ ЛОГИКА РАЗВИТИЯ НАУКИ И ОТВЕТСТВЕННОСТЬ УЧЕНОГО ... 429
6. СОЦИАЛЬНЫЕ СИЛЫ И ОТВЕТСТВЕННОСТЬ УЧЕНОГО 431
7. ДОЛЖНА ЛИ ОГРАНИЧИВАТЬСЯ СВОБОДА ИССЛЕДОВАНИЙ? ... 434
ИМЕННОЙ УКАЗАТЕЛЬ ... 439
ПЕРСОНАЛИИ ... 451
ЛИТЕРАТУРА ... 503
РАЗДЕЛ
I. ОБРАЗ НАУКИ

1. Что такое наука?

Дать определение любому понятию, как показывает опыт, не так легко и конечно, это не просто сделать по отношению к такому сложному и многомерному явлению как наука. Имеется немало подходов к определению этого понятия, однако, вероятно, самый естественный и плодотворный из них связан с истолкованием науки как специфической деятельности людей.

Любая деятельность
— имеет цель,
— конечный продукт,
— методы и средства его получения,
— направлена на некоторые объекты, выявляя в них свой предмет,
— представляет собой деятельность субъектов, которые, решая свои задачи, вступают в определенные социальные отношения и образуют различные формы социальных институтов.

По всем этим измерениям наука существенно отличается от других сфер человеческой деятельности.

2. Цель науки

Главной, определяющей научную деятельность целью, является получение знаний о реальности.

Знания приобретаются человеком во всех формах его деятельности — и в обыденной жизни, и в политике, и в экономике, и в искусстве, и в инженерном деле. Но здесь получение знаний не является главной целью.

Искусство предназначено для создания эстетических ценностей. Даже в литературе, где правдивое отображение жизни является важным критерием ценности произведения, не существует жестких критериев отличия подлинных событий от вымышленных. В искусстве на первом плане стоит отношение художника к реальности, а не отображение ее самой. Оно призвано к тому, чтобы развить у человека эстетическое отношение к действительности, создать новый мир художественных ценностей, в которых оно проявлялось бы наиболее концентрированно. Эта творческая, субъективно
ная сторона искусства наиболее четко проявляет себя в музыке, живописи, архитектуре, танце, где, очевидно, проблема отображения реальности уходит на второй план.

Экономическая реформа, чтобы быть успешной, конечно, должна опираться на знания о действительности. Иной раз для этого необходимо и проведение специальных научных исследований. Однако каждому ясно, что она оценивается прежде всего с точки зрения ее эффективности, практического результата.

Аналогично дело обстоит в инженерной деятельности. Ее продуктом является проект, разработка новой технологии, изобретение. Сегодня они все в большей степени опираются на науку. Однако и в этом случае продукт инженерных разработок оценивается с точки зрения его практической пользы, оптимальности используемых ресурсов, расширения возможностей преобразования реальности, а не по количеству и качеству приобретенных знаний.

Таким образом, мы видим, что наука по своей цели, очевидно, отличается от всех других видов деятельности.

Отсюда, конечно, не следует, что определение «ненаучный» надо связывать с негативной оценкой. Каждый род деятельности имеет свое предназначение, свои цели. С возрастанием роли науки в жизни общества мы видим, что научное обоснование становится целесообразным и даже необходимым во все больших сферах жизни общества. Но мы видим с другой стороны, что далеко не везде оно возможно и далеко не всегда уместно.

3. Что производит наука?

Научные знания

Итак, продуктом научной деятельности являются, прежде всего, знания. Однако важно иметь в виду, что знания, как мы уже говорили, приобретаются не только в науке.

— Поэтому знания бывают научные и ненаучные.

Уже поэтому понятие «истинное» не эквивалентно понятию «научное». Вполне может быть получено истинное знание, которое, вместе с тем, не является научным.
С другой стороны, понятие «научный» может применяться и в таких ситуациях, которые отнюдь не гарантируют получения истинных знаний.

Существует совокупность критериев научности, используя которые профессионалы легко отличают научную работу от ненаучной.

Так, в современном физическом или техническом журнале вы не найдете статей, обосновывающих возможность построения вечного двигателя, предоставляющего человеку возможность получать энергию «бесплатную и безвредную». А астрономы не будут всерьез обсуждать работы по астрологии.

Вместе с тем в теоретических журналах мы сплошь и рядом встречаем огромное количество публикаций, которые представляют собой научные гипотезы, имеющие поисковый характер и являющиеся, по сути дела, строительными лесами соответствующего научного здания.

Следует иметь также в виду, что установление истинного знания в науке сравнительно жестко регламентируется на эмпирическом уровне.

«Там, где имеются вещественные свидетельства, — писал О. фон Герике еще в XVII веке, — нет надобности в словах, а с теми, кто отрицает убедительные и надежные опыты, не нужно ни спорить, ни начинать войну: пусть сохраняют себе мнение, какое хотят, и идут во тьму по следам кротов».

Однако совсем не просто устанавливаются истинны на уровне теории.

Как писал Л. Браузер, «неправильная теория, не наталкивающаяся на противоречие, не становится от этого менее неправильной, подобно тому как преступное поведение, не остановленное правосудием, не становится от этого менее преступным».

К. Поппер даже утверждал, что, хотя поиск истины, несомненно, является душой научного познания, установление истины на теоретическом уровне в принципе невозможно. Любое теоретическое высказывание, как показывает, с его точки зрения, история, всегда имеет шансы быть опровергнутым в будущем.

— Одним из важнейших отличительных качеств научного знания является его систематизированность.

С различными формами организации знания мы встречаемся не только в науке.
Известный аргентинский писатель, поэт и философ Х.Борхес приводит пример классификации животных, которая дана в некоей китайской энциклопедии. В ней животные подразделяются следующим образом:

— принадлежащие Императору,
— бальзамированные, — прирученные,
— молочные поросята,
— сирены,
— сказочные,
— бродячие собаки,
— нарисованные очень тонкой кисточкой из верблюжей шерсти, издалека кажущиеся мухами и др.

Мы встречаем менее экстравагантные способы классификации знания на каждом шагу. Их можно увидеть в книге о вкусной и здоровой пище, дорожном атласе или телефонном справочнике.

Научная систематизация знания обладает целым рядом важных особенностей. Для нее характерно стремление к полноте, ясное представление об основаниях систематизации и их непротиворечивости.

(10)

Элементами научного знания являются
факты,
закономерности,
теории,
научные картины мира.

Огромная область научных знаний расчленена на отдельные дисциплины, которые находятся в определенной взаимосвязи и единстве друг с другом.

— Стремление к обоснованию, к доказательности получаемого знания настолько значительно для науки, что с его появлением нередко связывают даже сам факт ее рождения.

Многие истории науки склонны сегодня считать, что математика и даже научное познание в целом берет свое начало в Древней Греции. Особое значение здесь придается деятельности Фалеса Милетского, который первым поставил вопрос о необходимости доказательства геометрических утверждений и сам осуществил целый ряд таких доказательств.
Практически полезные знания о численных отношениях и свойствах различных геометрических фигур накапливались столетиями. Однако только древние греки превратили их в систему научных знаний, придали высокую ценность обоснованным и доказательным знаниям, безотносительно к возможности их непосредственного практического использования.

Знаменитые апории Зенона и сегодня поражают своей логической изощренностью. А изящные построения огромного массива геометрических знаний как выведенных из небольшого числа постулатов и аксиом, осуществленные Евклидом, до сих пор восхищают нас.

Как писал А.Эйнштейн, «кажется удивительным самый факт, что человек способен достигнуть такой степени надежности и чистоты в отвлеченном мышлении, какую нам впервые показали греки в геометрии».

Важнейшими способами обоснования полученного эмпирического знания являются

— многократные проверки наблюдениями и эксперIMENTами,

— обращение к первоисточникам, статистическим данным, которые осуществляются учеными независимо друг от друга.

При обосновании теоретических концепций обязательными требованиями, предъявляемыми к ним, является их

— непротиворечивость,
— соответствие эмпирическим данным,
— возможность описывать известные явления и предсказывать новые.

Обоснование научного знания, приведение его в стройную, единую систему всегда было одним из важнейших факторов развития науки.

— Существенной характеристикой научного знания является его интерсубъективность.

Постоянное стремление обосновать научное знание, открытость его для компетентной критики делает науку образцом рациональности.

С точки зрения К. Поппера, ученый, выдвигая гипотезу, ищет не столько ее подтверждения, сколько опровержения, что выражает критиче-
ский дух науки. Наибольшую ценность в науке приобретают оригинальные, смелые идеи, которые, вместе с тем, подтверждаются опытом. Именно они обладают наибольшей способностью к расширению проблемного поля науки, способствуют постановке новых задач, продвигающих научное познание к новым высотам.

В XX в., когда наука начала развиваться беспрецедентно быстро, эта особенность научного познания стала наиболее заметной. По знаменитому выражению Н. Бора, подлинно глубокая новая теория должна в определенном смысле быть сумасшедшей. Она должна порывать с прежним образом мысли, со старыми стандартами мышления.

Классическими образцами такого рода теорий являются неевклидовые геометрии, теория эволюции, молекулярная генетика, теория относительности и квантовая механика. А разве не относится к этому же классу научных достижений проникновение в мир бессознательного, в особенности структуры и функционирования человеческого мозга, раскрытие закономерностей антропогенеза, выявление универсальных структур в языке, в произведениях фольклора?

Вместе с тем, ориентированность на новации сочетается в науке с жестким консерватизмом, который представляет собой надежный заслон против введения в науку скороспелых, необоснованных новаций.

Еще Ж. Б. Ламарк справедливо писал:
«каких бы трудов не стоило открытие новых истин при изучении природы, еще большие затруднения стоят на пути их признания.
Эти затруднения, зависящие от разных причин, в сущности, скорее выгодны, чем вредны для общего состояния науки, так как благодаря строгому отношению к новым идеям, не позволяющему принять их за истины, много странных, более или менее правдоподобных, но беспочвенных идей едва появится, как сейчас же предается забвению. Правда, на том же основании иногда отмечаются или остаются в пренебрежении даже прекрасные взгляды и основательные мысли. Но лучше подвергнуть долгому испытанию однажды открытую истину, лишая ее заслуженного внимания, чем допустить легкомысленное признание всего, что создается пылким воображением человека».
При всей динамичности науки вся совокупность предъявляемых к ней жестких требований дает возможность элиминировать из результатов научной деятельности все субъективное, связанное со спецификой самого ученого и его мировосприятия.

В искусстве то или иное произведение органически связано с автором, его создавшим. Если бы Л. Н. Толстой не написал «Войну и мир», или Л. ван Бетховен не сочинил бы свою знаменитую «Лунную сонату», то этих произведений просто не существовало бы.

В науке положение принципиально иное.

Хотя мы знаем, что нередко законам, принципам или теориям приписываются имена отдельных ученых, вместе с тем, мы хорошо понимаем, что если не было бы И. Ньютон, Ч. Дарвин, А.Эйнштейна, теории, которые мы связываем с их именами, все равно были бы созданы.

Они появились бы потому, что представляют необходимый этап развития науки.

Об этом красноречиво свидетельствуют многочисленные факты из истории научного познания, когда к одним и тем же идеям в самых различных областях науки приходят независимо друг от друга разные ученые.

Чем еще ценна наука?

Продуктом науки являются не только знания.

Для получения научных знаний необходима разработка различных методов наблюдения и экспериментирования, а также многообразных средств, при помощи которых они осуществляются. Многочисленные приборы, экспериментальные установки, методики измерения, сбора, обработки, хранения и передачи информации оказываются широко применимыми не только в самой науке, но и за ее пределами и прежде всего, в производстве.

К продуктам науки следует отнести и научный стиль рациональности, который транслируется в наше время, по существу, во все сферы человеческой деятельности. Систематичность и обоснованность, столь характерные для научной деятельности, являются большой социальной ценностью, которая в той или иной степени оказывает воздействие на жизнь как общества в целом, так и каждого из нас.

И, наконец, наука представляет собой источник нравственных ценностей. Она демонстрирует нам такого рода профессию, в которой честность, объективность являются важнейшими элементами профессиональной этики.
ки. Конечно, не надо идеализировать ученых. В науке, как и в любой друго-
й сфере жизни, случается всякое. И ее ни в коей мере нельзя представ-
лять себе как область общественной жизни, в которой все заняты в ней,
бескорыстно служат Истине, Добру и Красоте. Однако, по-видимому, прав
был А.Эйнштейн, который писал:

«Храм науки — строение многослойное. Различны пребывающие в
нем люди и приведшие их туда духовные силы. Некоторые занимаются
наукой с гордым чувством своего интеллектуального превосходства; для
них наука является тем подходящим спортом, который должен им дать
полноту жизни и удовлетворение честолюбия. Можно найти в храме и
других: плоды своих мыслей они приносят здесь в жертву только в утили-
тарных целях. Если бы посланный богом ангел пришел в храм и изгнал из
него тех, кто принадлежит к этим двум категориям, то храм катастрофиче-
ски опустел бы.

...Я хорошо знаю, что мы только что с легким сердцем изгнали мно-
гих людей, построивших значительную, возможно, даже наибольшую,
часть науки; по отношению ко многим принятое решение было бы для
нашего ангела горьким. Но одно кажется мне несомненным: если бы суще-
ствовали только люди, подобные изгнанным, храм не поднялся бы, как не
мог бы вырасти лес из одних лишь вьющихся растений».

4. Наука как процесс познания

Так уж устроен человек, что он очень быстро привыкает к самому
невероятному, к самому необычному. Даже удивительные достижения че-
ловеческого духа, которые родились в результате огромных усилий многих
и многих поколений, воспринимаются им как что-то естественное и само
собой разумеющееся.

Конечно, очень важно уметь быстро ассимилировать достижения
культуры. В наше динамичное время это жизненно необходимо. Но вместе
с тем, нельзя терять чувство изумления перед достижениями, которые бы-
ли осуществлены нашими предками.

Как происходит постижение мира?

Что обеспечивает возможность науке столь глубоко проникать в тайны
мироздания?

Все это похоже на настоящее чудо, представляющее перед нашими гла-
зами. Ведь в наше время наука даст нам картину глобальной эволюции ми-
ра, начиная буквально с рождения Метагалактики, которое произошло
около 20 млрд. лет назад. Ученые обсуждают различные варианты эволюции Вселенной, возник-
новения и будущего Солнечной системы и планеты, на которой мы живем. Сегодня мы представляем себе основные стадии развития жизни на Земле, антропо- и социогенеза, возникновения и эволюции сознания человека, различных форм культуры, многообразных способов освоения человеком окружающей его действительности.

Как отмечал Б. Рассел, древние греки, сделав первые шаги в научном познании, не задумывались над тем, насколько будет труден начатый ими путь. «Они представляли себе это более легким делом, чем оно было в действительности, но без такого оптимизма у них не хватило бы мужества положить начало этому делу».

Как же осуществляется сегодня научное познание?
Каков арсенал тех методов и средств, при помощи которых развивается наука?

Методы научного познания
Прежде всего следует отметить, что в науке используются по сути дела обычные приемы рассуждений, которые характерны для любого рода человеческой деятельности и широко применяются людьми в их обыденной жизни.
Речь идет об индукции и дедукции, анализе и синтезе, абстрагировании и обобщении, идеализации, аналогии, описании, объяснении, предсказании, обосновании, гипотезе, подтверждении и опровержении и пр.
В науке выделяются эмпирический и теоретический уровни познания, каждый из которых обладает своими специфическими методами исследования.
Эмпирическое познание поставляет науке факты, фиксируя при этом устойчивые связи, закономерности окружающего нас мира.
Важнейшими методами получения эмпирического знания являются наблюдение и эксперимент.
Одно из главных требований, предъявляемых к наблюдению, — не вносить самим процессом наблюдения какие-либо изменения в изучаемую реальность.
В рамках эксперимента, наоборот, изучаемое явление ставится в особые, специфические и варьируемые условия, с целью выявить его существенные характеристики и возможности их изменения под влиянием внешних факторов.

Важным методом эмпирического исследования является измерение, которое позволяет выявить количественные характеристики изучаемой реальности.

В науках о человеке, культуре, обществе большое значение приобретает поиск, тщательное описание и изучение исторических документов и других свидетельств культуры как прошлого, так и настоящего. В процессе эмпирического познания общественных явлений широко применяется сбор информации о реальности (в частности, статистических данных), ее систематизация и изучение, а также разные виды социологических опросов.

Вся информация, которая получается в результате применения такого рода процедур, подвергается статистической обработке. Она многократно воспроизводится. Источники научной информации и способы ее анализа и обобщения тщательно описываются с тем, чтобы любой ученый имел максимальные возможности для проверки полученных результатов.

Однако, хотя и говорят, что «факты — воздух ученого», постижение реальности невозможно без построения теорий. Даже эмпирическое исследование действительности не может начаться без определенной теоретической установки.

Вот как писал по этому поводу И. П. Павлов: «...во всякий момент требуется известное общее представление о предмете, для того чтобы было на что цеплять факты, для того чтобы было с чем двигаться вперед, для того чтобы было что предполагать для будущих изысканий. Такое предположение является необходимостью в научном деле».

Без теории невозможно целостное восприятие действительности, в рамках которого многообразные факты укладывались бы в некоторую единую систему.

Сведение задач науки только к сбору фактического материала, по мнению А. Пуанкаре, означало бы «полное непонимание истинного характера науки». «Ученый должен организовать факты, — писал он, — наука слагается из фактов, как дом из кирпичей. И одно голое накопление фактов не составляет еще науки, точно так же, как куча камней не составляет дома». (17)
Сущностью теоретического познания является не только описание и объяснение многообразия фактов и закономерностей, выявленных в процессе эмпирических исследований в определенной предметной области, исходя из небольшого числа законов и принципов, она выражается также и в стремлении ученых раскрыть гармонию мироздания.

Теории могут быть изложены самыми различными способами. Нередко мы встречаем склонность ученых к аксиоматическому построению теорий, которое имитирует образец организации знания, созданный в геометрии Евклидом. Однако чаще всего теории излагаются генетически, постепенно вводя в предмет и раскрывая его последовательно от простейших до все более и более сложных аспектов.

Вне зависимости от принятой формы изложения теории ее содержание, конечно, определяется теми основными принципами, которые положены в ее основу.

Теории не появляются как прямое обобщение эмпирических фактов. Как писал А. Эйнштейн, «никакой логический путь не ведет от наблюдений к основным принципам теории». Они возникают в сложном взаимодействии теоретического мышления и эмпирического познания реальности, в результате разрешения внутренних, чисто теоретических проблем, взаимодействия науки и культуры в целом.

Теоретики широко применяют в своих исследованиях процедуры моделирования реальных процессов, выводя затем на основе анализа построенных моделей проверяемые эмпирически следствия. Они используют так называемые мысленные эксперименты, в которых теоретик как бы играет возможные варианты поведения созданных его разумом идеализированных объектов. Развитием этого способа теоретического мышления, который впервые стал широко применяться Галилеем, является так называемый математический эксперимент, когда возможные последствия варирования условий в математической модели просчитываются на современных компьютерных системах.

Большое значение для научного познания и особенно теоретических исследований имеет философское осмысление сложившихся познавательных традиций, рассмотрение образа реальности, изучаемой ученым, в контексте целостной картины мира.

Обращение к философии становится особенно актуальным в переломные этапы развития науки.
В истории развития научного познания в целом, а также в отдельных его дисциплинах складывается особый стиль мышления, который определяется наиболее значимыми в этой области теоретическими концепциями и наиболее эффективными конкретными методами эмпирического познания.

Вот что писал по этому поводу М.Борн.

«...я думаю, что существуют какие-то общие тенденции мысли, изменяющиеся очень медленно и образующие определенные философские периоды с характерными для них идеями во всех областях человеческой деятельности, в том числе и в науке. Паули в недавнем письме ко мне употребил выражение «стили»: стили мышления — стили не только в искусстве, но и в науке. Принимая этот термин, я утверждаю, что стили бывают и у физической теории, и именно это обстоятельство придает своего рода устойчивость ее принципам».

Умение вырваться из плена сложившихся стандартов присуще далеко не каждому ученому. Однако без этого невозможно развитие науки. Философское осмысление опыта научного познания позволяет ученым прокладывать новые пути в постижении действительности. Великие достижения науки всегда были связаны с выдвижением смелых философских обобщений и оказывали воздействие не только на отдельные области науки, но и на развитие ее в целом.

Философия содействует не только поиску эффективного описания и объяснения изучаемой реальности, но и ее пониманию. Она способствует выработке у членого интуиции, позволяющей ему свободно двигаться в интеллектуальном пространстве, актуализируя не только явное, зафиксированное знание, но и так называемое неявное, невербализованное восприятие реальности. Философия выводит работу ученого за границу стандартности и ремесла и превращает ее в подлинно творческую деятельность.

(19)

Средства познания

Важнейшим средством научного познания, несомненно, является язык науки.

Это, конечно, и специфическая лексика, и особая стилистика. Для языка науки характерна определенность используемых понятий и терминов, стремление к четкости и однозначности утверждений, к строгой логичности в изложении всего материала.
В современной науке все большее значение приобретает использование математики.

Еще Г. Галилей утверждал, что книга Природы написана языком математики.

В полном соответствии с этим утверждением вся физика развивалась со времен Г. Галилея как выявление математических структур в физической реальности. Что касается других наук, то и в них во все возрастающей степени идет процесс математизации. И сегодня это касается уже не только применения математики для обработки эмпирических данных.

Арсенал математики активно входит в саму ткань теоретических построений буквально во всех науках.

В биологии эволюционная генетика в этом отношении уже мало чем отличается от физической теории.

Никого уже не удивляет словосочетание «математическая лингвистика».

Даже в истории делаются попытки построения математических моделей отдельных исторических явлений.

Современное научное исследование немыслимо без создания специальных наблюдательных средств и экспериментальных установок. Процесс научного познания существенно зависит от развития используемых наукой средств.

Первые закономерности в природе были установлены, как известно, в поведении небесных тел и они были основаны на наблюдениях за их движением, осуществляемых невооруженным глазом. Г. Галилей в своих классических опытах с движением шара по наклонной плоскости измерял время

по количеству воды, вытекшей через тонкую трубку из большого резервуара. Тогда еще не было часов.

Однако давно прошло время, когда научные исследования могли осуществляться при помощи подручных средств.

Галилей прославился в науке не только своими пионерскими исследованиями, но и введением в науку подзорной трубы. И сегодня астрономия немыслима без самых разнообразных телескопов, которые позволяют наблюдать процессы в космосе, осуществляющиеся за многие миллиарды километров от Земли. Создание в XX в. радиотелескопов превратило аст-
рономию во всеволновую и ознаменовало собой настоящую революцию в постижении космоса.

Вспомним, какую огромную роль сыграл в развитии биологии микроскоп, открывший человеку новые миры. Современный электронный микроскоп позволяет видеть атомы, которые несколько десятилетий назад считались принципиально ненаблюдаемыми и существование которых еще в начале нашего века вызывало сомнение.

Мы прекрасно понимаем, что физика элементарных частиц не могла бы развиваться без специальных установок, подобных синхрофазotronам.

Наукой сегодня активно используются для проведения экспериментов и наблюдений космические корабли, подводные лодки, различного рода научные станции, специально организованные заповедники.

Научные исследования невозможны без наличия приборов и эталонов, которые позволяют зафиксировать те или иные свойства реальности и дать им количественную и качественную оценку. Они, конечно, предполагают разработку специальных средств обработки результатов наблюдения и эксперимента.

При этом особое значение приобретают точные приборы, измеряющие время, расстояние, энергию.

В практику современной науки все шире входит планирование эксперимента и автоматизированное его осуществление.

Революцию в обработке научной информации и ее передаче производит применение компьютера.

Специфика методов и средств в разных науках

Конечно, методы и средства, используемые в разных науках, не идентичны.

Всем понятно, что нельзя экспериментировать с прошлым. Весьма рискованы и очень ограничены эксперименты с человеком и обществом. У каждой науки имеется свой особый язык, своя система понятий. Довольно значительна вариативность и в стилистике, и в степени строгости рассуждений. Чтобы убедиться в этом, достаточно сопоставить математические или физические научные тексты с текстами, относящимися к гуманитарным или общественным наукам.

Эти различия определяются не только спецификой самих предметных областей, но и уровне развития науки в целом.
Надо иметь в виду, что науки развиваются не изолированно друг от друга. В науке в целом происходит постоянное взаимопроникновение методов и средств отдельных наук. Поэтому развитие конкретной области науки осуществляется не только за счет выработанных в ней приемов, методов и средств познания, но и за счет постоянного заимствования научного арсенала из других наук.

Познавательные возможности во всех науках постоянно возрастают. Хотя разные науки обладают несомненной спецификой, не нужно ее абсолютизировать.

В этом отношении чрезвычайно показательно использование в науке математики.

Как показывает история, математические методы и средства могут разрабатываться не только под влиянием потребностей науки или практики, но и независимо от области и способов их приложения. Аппарат математики может быть использован для описания областей реальности, прежде совершенно неизвестных человеку и подчиняющихся законам, с которыми он никогда не имел никакого соприкосновения. Эта, по выражению Ю. Вигнера, «невероятная эффективность математики» делает перспективы ее применения в самых разных науках, по существу, неограниченными.

Вот что пишут Дж. фон Нейман и О. Моргенштерн по этому поводу:

«Часто аргументация против применения математики состоит из ссылок на субъективные элементы, психологические факторы и т. п., а также на то, что для многих важных факторов до сих пор нет способов количественного измерения. От этой аргументации следует отбросить как совершенно ошибочную... Представим себе, что мы живем в период, предшествующий математической или почти математической фазе развития физики, т. е. в XVI веке, или в аналогичную эпоху для химии и биологии, т. е. в XVIII веке... Для тех, кто относится скептически к применению математики в экономике, заметим, что положение дел в физических или биологических науках на этих ранних этапах едва ли было лучше, чем в настоящее время в экономике».

Вместе с тем, хотя и очевидно, что науки будут дальше развиваться и продемонстрировать нам совершенно новые возможности познания действительности, вряд ли следует ожидать универсализации методов и средств, используемых в науках. Особенности самих объектов познания и соответственно различные познавательные задачи будут, видимо, и в будущем стимулировать появление специфических методов и средств, характер-
терных не только для различных наук, но и для отдельных областей исследо-
дований.

«Итак,— писал известный французский историк М. Блок,— мы ныне лучше подготовлены к мысли, что некая область познания, где не имеют силы Евклидовых доказательства или неизменные законы повторяемости, может, тем не менее, претендовать на звание научной. Мы теперь гораздо легче допускаем, что определенность и универсальность — это вопрос степени. Мы уже не чувствуем своим долгом навязывать всем объектам познания единообразную интеллектуальную модель, заимствованную из наук о природе, ибо даже там этот шаблон уже не может быть применен вполне. Мы еще не слишком хорошо знаем, чем станут в будущем науки о человеке. Но мы знаем: для того, чтобы существовать — продолжая, конечно, подчиняться основным законам разума, — им не придется отказы-ваться от своей оригинальности или ей стыдиться».

5. Знание о чем?

Наука дает знание обо всем: о событиях, процессах, объектах, о мире объективном и субъективном. Она изучает природу,

общество, человека, культуру, «вторую природу», созданную самим челове-
веком. Она изучает даже саму себя.

При этом она исходит из того, что все сущее в мире может быть по-
нимать из него самого, на основе действующих в нем законов. Это является одной из важнейших характеристик науки, отличающих ее от теологии, которая также стремится дать людям систематические и обоснованные знания.

Наиболее близкой к науке оказывается философия. Однако в целом она, несомненно, не является наукой. Особенно ясно это стало в наше вре-
мя, когда, вопреки классической философской традиции, в рамках которой философия трактовалась как особого рода наука, современные мыслители стали осуществлять философские построения, четко отграниченные от науки.

Так, в рамках экзистенциализма — широко распространенного направления в философии XX в. — утверждается, что философия не при-
звана давать какие-либо знания о действительности. Она предназначена для того, чтобы проявить всю глубину сущности и существования челове-
ческой личности.
В этом смысле у каждого из нас есть своя философия. Ее глубина зависит не от объема и уровня знаний, которыми обладает человек, а от степени его вовлеченности в духовный мир, в котором он живет.

Философия, подобно поэзии, глубоко индивидуальна и не должна претендовать на общецензимость. Как писал К. Яс-перс, то, «что на необходимой основе признается каждым, становится тем самым научным знанием и не является больше философией, а относится к определенной области познаваемого».

С другой стороны, в рамках неопозитивизма — философского течения, также весьма влиятельного в XX в., — утверждается, что философия хотя и пользуется научными методами, но она никогда не являлась и не должна являться наукой. Философия не дает никаких знаний. Ее цель — лишь прояснение смысла уже полученных высказываний. По словам М. Шлика, философия как особая наука не имеет право на существование. «Совокупность наук, включая высказывания повседневной жизни, есть система знаний; вне ее нет области еще «философских» истин, философия не система предложений, она не наука».

Вместе с тем, в рамках философии всегда проводились и проводятся исследования, которые вправе претендовать на статус научных.

К таковому по мнению М. Борна можно отнести «исследование общих черт структуры мира и наших методов проникновения в эту структуру». Многие ученые считают, что эта проблематика чрезвычайно важна для развития науки.

6. Наука как социальный институт

«Тот, кто думает, что может обойтись без других, — писал Ф. де Ларошфуко, — сильно ошибается; но тот, кто думает, что другие не могут обойтись без него, ошибается еще сильнее».

В отношении к науке этот тезис вдвойне справедлив. Наука по самой сути своей — социальное явление. Она создается сообществом ученых на протяжении уже более двух тысячелетий и представляет собой, конечно, не только отношение ученого к познаваемой им действительности, но и определенную систему взаимосвязей между членами научного сообщества. В науке существует свой, специфический образ жизни, регулируемый системой, как правило, неписанных, но передаваемых по традиции норм, своей системы ценностей.
Естественно, что способы социальной организации и взаимоотношений ученых на протяжении истории науки менялись в соответствии и с особенностями ее развития, изменением ее статуса в жизни общества, и с развитием самого общества в целом.

Наука как социальный институт за время своего существования претерпела огромные изменения. От деятельности десятков древнегреческих ученых, собравшихся в философских школах, занимающихся исследованиями по своему собственному желанию, вплоть до современного пяти-миллионного международного научного сообщества, объединенного профессионально, организовывающего свою деятельность как на национальном, так и на международном уровне, в исследовательских группах, лабораториях, институтах. Сегодня наука по существу представляет собой мощную отрасль по производству знаний с огромной материальной базой, с развитой системой коммуникаций.

Известный американский ученый-химик Г.Льюис и его коллега Л.Рандалл писали: «Есть старинные храмы, торжественные и внушающие, помимо своей священной цели, благоговение. Даже любопытствующий турист говорит о серьезных вещах тихим голосом, и его шепот раздается под сводами нефа и эхом возвращается к нему наполненным тайной. Труд многих поколений архитекторов и художников уже забыт, леса, построенные для работы, давно убраны, все ошибки исправлены или скрыты под слоем пыли веков, и видя только совершенно законченное целое, мы преклоняемся перед сверхчеловеческими силами. Иногда же мы входим в такое строение, когда оно недостроено. Мы слышим стук молотков, запах табака, и грубые шутки рабочих напоминают нам, что эти великие сооружения есть лишь результат обычных человеческих усилий, целенаправленных и целестремленных.

В науке есть свои храмы, построенные усилиями немногих архитекторов и многих работников».

Наука сегодня — это специальная профессиональная деятельность, дело, которому человек посвящает всю свою жизнь.

Любопытно определение профессионала-ученого, которое было дано В.Гейзенбергом.

«Многие, — писал он, — возможно, ответят, что профессионал — человек, который очень много знает о своем предмете. Однако с этим определением я не мог бы согласиться, потому что никогда нельзя знать о каком-либо предмете действительно много. Я предпочел бы такую форму-
лировку: профессионал — это человек, которому известны грубейшие ошибки, обычно совершаемые в его профессии, и который поэтому умеет их избегать».

Это определение Гейзенберга, хотя оно и является с точки зрения обыденного восприятия ученого несколько парадоксальным, точно схватывает суть дела.

На памятнике, который в 1755 г. был воздвигнут И.Ньютону в Кембридже, имеется следующая надпись: «Разумом он превосходил род человеческий».

Вместе с тем сам И.Ньютон незадолго перед смертью говорил: «Не знаю, чем я могу казаться миру, но сам себе я кажется только мальчиком, играющим на морском берегу, развлекающимся тем, что до поры до времени отыскиваю камешек более цветистый, чем обыкновенно, или красивую раковину, в то время как великий океан истины расстилается передо мной неисследованным».

А вот как оценивал свои достижения Ч.Дарвин: «Я никогда не был столь безрассуден, чтобы воображать, что мне удалось что-то большее, чем наметить некоторые черты из обширных основ происхождения видов».

Научная деятельность сегодня — это совместная работа творческих коллективов.

Это специализация не только по отдельным областям науки или даже отдельным ее проблемам, но и распределение различных функций в научной деятельности.

Одним из первых физиков, который не проводил никаких экспериментов, был М. Планк. Сегодня существуют специальные институты теоретической физики, которые не занимаются экспериментальной деятельностью.

Существует специальная научная деятельность, направленная на создание приборов, установок и других средств научных исследований.

Сегодня наука немыслима без менеджерских функций, без добывания средств для ее развития и умения их эффективно использовать.

Кроме того, в научных коллективах идет своя дифференциация научной деятельности. Одни ученые оказываются более склонными к выдвижению идей, другие — к их обоснованию, третьи — к их разработке, четвертые — к их приложению, и эти их качества во многом определяют их место в исследовательской работе.
В. Оствальд одним из первых обратил внимание на различие в стилях деятельности ученых. Он выделил два основных их типа: классики и романтики.

— Для первых характерны стремление к индивидуальной работе, уединению, тщательной и всесторонней проработке идей.

— Вторые склонны к коллективной деятельности, популяризации своих идей, в работе спонтанны.

Известен такой анекдот, в котором удачно переданы некоторые черты ученого классика.

Однажды молодой ученый спросил у своего руководителя: «Профессор, я вижу как вы уже столько лет членик за члеником изучаете этого червя. Что вы собираетесь делать, когда закончите эту работу?» «О, мой милый друг, — ответил профессор. — Червь длинен, а жизнь... коротка».

Жизнь в науке наполнена как творческими исканиями, так и рутинным трудом. В ней ученый ведет «борьбу» не только с познаваемой реальностью, но и вступает в сложные отношения со своими коллегами, с общественным мнением. От ученого требуется постоянное подтверждение его профессиональности, которое осуществляется через систему как объективной оценки продуктов его труда, в частности через публикации, так и через общественное признание. Деятельность ученого стимулируется и оценивается не только оплатой труда, но и различного рода степенями, званиями, наградами.

Самой высокой, престижной наградой в области физики, химии, медицины и физиологии с 1901 г., а в экономике с 1969 г. является Нобелевская премия. До 1990 г. было присуждено 427 премий. Вот как эти премии распределились по странам:

<table>
<thead>
<tr>
<th>Страна</th>
<th>Количество</th>
</tr>
</thead>
<tbody>
<tr>
<td>США</td>
<td>172</td>
</tr>
<tr>
<td>Англия</td>
<td>66</td>
</tr>
<tr>
<td>Германия</td>
<td>62</td>
</tr>
<tr>
<td>Франция</td>
<td>23</td>
</tr>
<tr>
<td>Россия и СССР</td>
<td>2+9=1</td>
</tr>
</tbody>
</table>

Женщины получили 9 премий. При этом М. Склодовская-Кюри была награждена дважды. А в самом раннем возрасте — в 25 лет лауреатом этой премии стал английский физик У. Л. Брэгг (1915 г.).
Жизнь в науке — это постоянная борьба различных мнений, направлений, борьба за признание работ, идей ученого, а с другой стороны, в силу самой специфики науки, это и борьба за приоритет в полученном результате.

Наше современники явились свидетелями острейших противостояний представителей различных направлений в науке: детерминистского и вероятностного истолкования квантовой механики, фиксизма и мобилизма в геологии, исторической школы и синхронического изучения языка в лингвистике.

Известно, как непросто утверждались в науке даже такие фундаментальные научные теории, как теория относительности, квантовая механика, генетика, теория эволюции, структурная лингвистика.

О том, как сложно иной раз складывается судьба ученого красноречиво свидетельствуют многие примеры из жизни выдающихся ученых.

Всем известна судьба идей Н.Коперника, которые он осмелился опубликовать лишь непосредственно перед смертью. Работы Г.Менделя, ставшие основой генетики, не были признаны при его жизни.

Классика структурной лингвистики Ф.Соссюра научная общественность заметила лишь после его смерти.

Ф.Гаусс, владея основами неевклидовой геометрии и прекрасно понимая, какое большое значение имеет открытие новой геометрической системы, тем не менее так и не стал ничего публиковать по этой теме. В своем письме к К.Бесселю в 1829 г. Ф.Гаусс писал: «Между тем я еще долго не приду к тому, чтобы обработать для опубликования мои весьма обширные исследования по этому вопросу и, может быть, этого никогда не произойдет в моей жизни, так как я опасаюсь крика биотийцев, если я выскажу мои возражения целиком».

Широко известно высказывание по этому поводу М.Планка: «Обычно новые научные истины побеждают не так, что их противников убеждают и они признают свою неправоту, а большей частью так, что противники эти постепенно вымирают, а подрастающее поколение усваивает истину сразу».

Одним из проявлений особенностей жизни науки является секретность.

В XX в. масштабы секретности научных исследований стали поистине огромными. Это вызвано прежде всего тем, что около 40% всех науч-
ных исследований ведутся сегодня по заказам военных ведомств. Они во многом также обусловлены тесной связью научных разработок с промышленностью, а тем самым и с коммерческой тайной.

Однако секретность в науке была всегда.

Существует такое предание. Когда в рамках пифагорейского союза была открыта несоизмеримость диагонали квадрата с его стороной, это привело в замешательство его членов. Ведь с точки зрения главы этого союза — Пифагора все существующее в мире представляет гармонию чисел. А это значит, что не могло в принципе существовать отношения, не выражимого в натуральных числах или дробях. Открытие было запрещено разглашать под страхом смертной казни. Однако эта тайна была все же разглашена, ну а виновника этого разглашения постигла смерть. Так что заниматься наукой было небезопасно даже в далеком прошлом.

7. Перспективы развития науки

Обсуждение будущего науки, как и вообще будущего, дело очень деликатное. История показывает, что даже самые проницательные умы попадали со своими предсказаниями впросак.

Знаменитый французский философ Д. Дидро писал: «Не пройдет ста лет, как нельзя будет назвать и трех крупных математиков в Европе. Эта наука остановится на том месте, куда ее довели Бернулли, Эйлер, Мопертюи, Клеро, Фонтен, Д’Аламбер и Лагранж. Они воздвигнут геркулесовы столпы. Дальше этого наука не пойдет. Их труды в будущие века займут то же место, что и египетские пирамиды, громады которых, испещренные иероглифами, вызывают у нас потрясающие представления о могуществе и силе людей, их воздвигших».

Простим Д. Дидро. Ведь он не был специалистом в области математики. Но чем оправдать широко распространенное среди физиков еще в начале нашего века представление о законченности развития физики?

Знаменитый немецкий физик Г. Герц считал немыслимым, чтобы опыт даже самого отдаленного будущего когда-либо мог хоть что-то изменить в незыблемых положениях механики.

Широко известна история о том, что когда М. Планк в 80-х годах сообщил профессору Жоли о своем желании заниматься теоретической физикой, профессор стал убеждать его отказаться от этого намерения. Он сказал М. Планку: «Молодой человек, зачем вы хотите испортить себе жизнь,
весь теоретическая физика уже в основном закончена... Стоит ли браться за такое бесперспективное дело?!»

Выдающийся английский физик лорд Кельвин (У.Томсон) в речи по случаю наступления нового, XX столетия выразил сочувствие последующим поколениям физиков, на долю которых остались лишь мелкие доработки в практически завершенном здании.

Как будет развиваться наука в XXI веке?

Как бы ни было велико значение науки, очевидно, что рост ее кадров имеет границы.

— Прежде всего следует иметь в виду, что, как считают специалисты, наукой способны заниматься не более 6—8% населения.

— Кроме того, необходимо учитывать, что в обществе существует много других сфер человеческой деятельности, которые тоже развиваются, требуя все больших усилий людей, активизации их способностей и таланта.

Совершенно ясно, что для гармоничного развития общества, в нем, в соответствии с его потребностями и возможностями, должны быть оптимально распределены усилия. Все сферы деятельности значимы, и не нужно забывать того, что наука лишь одна из них. Только в гармоническом развитии со всеми остальными сферами жизни она может эффективно существовать.

Вместе с тем, каков предел занятости наукой, сказать трудно. В развитых странах в научных и инженерных разработках занято сегодня около 0,3% населения.

Как изменятся возможности общества выделять материальные и интеллектуальные ресурсы на развитие науки?

Очевидно, что они будут возрастать, в том числе и в большой степени в результате воздействия науки на само общество.

Здесь следует учесть также и то, что сама наука резко повышает свою эффективность. Компьютеризация науки, оснащение ее многими современными техническими средствами резко повышает производительность труда ученого. Поэтому наращива-

(31)
Учитывая опыт истории, мы можем быть уверены, что наука получит новые фундаментальные результаты, которые в очередной раз радикально изменят наши представления о действительности.

Вероятно математика останется лидером в науке и предоставит новые, невиданные прежде возможности, для ее широкого применения в других дисциплинах. Кто знает, может быть сбудется пожелание великого Г.В.Лейбница, который еще в XVII в. мечтал о том, что придет время, когда люди прекратят бесплодные дискуссии. Вместо того, чтобы спорить, они скажут друг другу: «будем вычислять».

Мы все прекрасно понимаем сегодня, что науки о человеке и об обществе, хотя и имеют немалые достижения, вместе с тем, существенно уступают по своему развитию естествознанию.

Изменится ли в этом отношении положение в XXI в.?

Как справедливо писал Э.Фромм: «Нельзя создать подводную лодку, только читая Жюля Верна; невозможно создать и гуманистическое общество, лишь читая книги пророков».

Сегодня, как никогда прежде, человечество ощущает огромный дефицит знаний об обществе и о человеке. Их недостаток сегодня не просто влияет на нашу жизнь. Он все в большей степени ставит под угрозу само существование человечества. Огромная мощь, которую приобрел человек благодаря развитию техники, не находится в гармонии с нашим умением рационально распорядиться ею.

Быть может, в свете этой новой для человечества ситуации, оно найдет в себе силы сконцентрировать внимание лучших умов на гуманитарных проблемах.

Изучению жизни человека, его развития, поведения, здоровья, раскрытию тайн его психики, постижению закономерностей функционирования и развития общества, экономики, культуры, глобальным проблемам, несомненно, будет уделяться все большее внимание.

(32)

«Технические утопии — например, воздухоплавание — были реализованы благодаря новой науке о природе, — писал Э.Фромм. — Человеческая утопия мессианского времени — утопия нового объединенного человечества, живущего в братстве и мире, свободного от экономической детерминации, от войн и классовой борьбы, может быть достигнута, если мы приложим к ее осуществлению столько же энергии, интеллекта и энтузиазма, сколько мы затратили на реализацию технических утопий».
Здесь естественно возникает вопрос: а почему же до сих пор человечество так легкомысленно относится к проблемам собственного существования? Может быть, дело в том, что наука еще не созрела для существенного продвижения в этой области.

Кто же не хочет быть богатым, здоровым и счастливым? Но как этого достичь?

Представим себе, что древние греки поставили бы перед собой цель побывать на луне. Их усилия, как бы велики они ни были, не привели бы к сокращению двухтысячелетнего периода развития науки, который понадобился, чтобы решить эту задачу. Кроме того, ниоткуда, к сожалению, не следует, что «утопия нового объединенного человечества», о которой говорит Э. Фромм, вообще осуществима.

Но, конечно, Э.Фромм безусловно прав, когда он утверждает, что «наше будущее зависит от того, готовы ли будут лучшие умы человечества, полностью осознав нынешнее критическое положение, посвятить себя новой гуманистической науке о человеке».

Мы можем быть уверены, что большие силы будут сосредоточены на стремлении получить и эффективно использовать доступные для человека новые источники энергии.

Очевидно уже наметившееся сейчас колоссальное развитие информационных технологий — переработка, хранение и передача информации.

Большое внимание будет уделено проблемам рационального использования природных ресурсов, эффективного воздействия на живые организмы и управления биосферными процессами.

Несомненно, усилится взаимодействие наук, появятся новые комплексные научные дисциплины. Интеграционные процессы в науке резко возрастут.

Вместе с тем, это обозначит огромную проблему, которая уже сейчас звучит довольно резко. Интенсивно осуществляющееся развитие науки и ее специализация требуют большого времени для выхода на ее передний край. Это обстоятельство становится объективной причиной, тормозящей интеграционные процессы в науке. Развитие науки становится все более похожим на описанное в Библии строительство вавилонской башни, которое, как известно, прекратилось потому, что, потеряя общий язык, люди перестали понимать друг друга.
Чтобы этого не случилось в науке, необходимо найти новые, современные формы образования.

Кроме того, как показывает история науки, широкое образование и высокая культура ученого совершенно необходимы для выхода за пределы ординарности, для получения выдающихся результатов.

Знакомясь с биографиями выдающихся ученых, мы видим, что это люди большой культуры, широких и разносторонних интересов. Они не только много и плодотворно занимаются специальными проблемами науки, но увлекаются искусством, литературой, философией и интересуются политикой.

Так, Н. Коперника считали видным специалистом по теории денег, он был исключным врачом, постоянно проявлял интерес к философии.

А Галилео Галилей! Ему мало было занятий математикой, физикой, астрономией. Он рисовал, играл на музыкальных инструментах, писал стихи, сочинял комедии, занимался литературной критикой. По его собственным словам, изучению философии он посвятил больше времени, чем занятиям математикой.

Такая широта образования и разносторонность интересов были присущи не только ученым эпохи Возрождения, но и выдающимся деятелям науки всех времен, в том числе и XX века.

Кто, читая работы В.Гумбольта, Дж.Максвелла, Л.Больцмана, Д.И.Менделеева, И.М.Сеченова, А.Пуанкаре, Д.Гильберта, Н.Винера, М.Планка, А.Эйнштейна, В.Гейзенберга, Э. Шредингера, М. Борна, В.И. Вернадского, не восхищался их огромной и глубокой эрудицией, блестящими литературными способностями, острым мышлением и его философской направленностью!

Анализируя творчество замечательного физика XIX века Л.Больцмана, лауреат Нобелевской премии М.Лауэ проницательно заметил, что «достижения, подобные достижениям Л.Больцмана, не вырастают на почве одностороннего, хотя и очень хорошего специального образования».

Кстати говоря, сам Л.Больцман писал о себе: «Тем, чем я стал, я обязан Шиллеру. Без него мог быть человек с той же бородой и формой носа, как у меня, но это был бы не я... Другим человеком, оказавшим на меня такое же влияние, является Бетховен...»
Одним из перспективных направлений в развитии науки является техническое оснащение самой научной деятельности.

Автоматизация наблюдения и экспериментальной деятельности, обработки получаемых результатов, широкое использование различного рода электронной вычислительной и аудиовизуальной техники для моделирования и анализа изучаемых процессов и явлений резко увеличат производительность и эффективность труда ученого. Радикально изменится доступ к научной информации, резко расширятся возможности прямых контактов ученых. Интернационализация науки будет постоянно возрастать.

Новые задачи потребуют радикальных перемен в подготовке научных кадров.

Существенно возрастет техническая оснащенность вузов, усилия их связи со специальными лабораториями. Повсеместно будут вводиться интенсивные методики обучения. Индивидуализация учебного процесса будет занимать доминирующее положение. Резко возрастут требования к преподавателю. Рутинная педагогическая работа будет предана во многом машинам. Произойдет усиление фундаментальной подготовки. Специальное образование органически соединится с общекультурным. Учащемуся будут предоставлены широкие возможности для выбора индивидуальной траектории в его подготовке, в том числе в предметах, выходящих за пределы одной специальности. Будет широко развиваться непрерывное образование.

О парапараналке

Сегодня многие, подчеркивая большое значение науки, вместе с тем говорят о ее консервативизме и ограниченности, поскольку она не признает так называемые нетрадиционные, парапаранальные концепции. Это — прежде всего астрология, парапсихология, уфология.

Как отнестись к этим исследованиям?

Может быть, как раз они и открывают колоссальные перспективы для постижения реальности?

Когда мы обсуждаем этот вопрос, очень важно иметь в виду следующее.

Эти проблемы появились не в наше время. Они коренятся в глубокой истории. Тем не менее, до сих пор этого типа исследования не считаются научными. Наука не принимает их в свое лоно не потому, что она не хочет этого делать, а потому, что не может.
Ученые были бы счастливы встрече с инопланетянами. Она не могла бы по своей значимости для науки сравниться ни с какими их открытиями. А можно ли представить себе теоретическое и практическое значение возможности предсказывать будущее или без всяких приспособлений передавать мысли на расстоянии? За такого рода открытия даже присуждение Нобелевской премии показалось бы слишком слабой оценкой.

Но, увы, к величайшему сожалению никаких достоверных, научно установленных фактов здесь нет.

Наука не может наделить статусом научности те исследования, которые не являются достаточно обоснованными, поскольку, по выражению Т. Гексли, «принимая что-нибудь на веру, наука совершает самоубийство».

Несоблюдение норм научной деятельности нередко создает иллюзию получения знания.

Существует, например, много зафиксированных данных, подобных следующим:

«Если к 1794 году, числу того года, когда пал Робеспьер, мы прибавим сумму его цифр, то получится 1815 — год падения Наполеона I; повторение того же действия дает 1830 — год падения Карла X».

Или другой пример.

«Французская палата депутатов в 1830 г. состояла из 402 членов, из которых 221 составляли партию, называвшуюся «La queue Robespierre», между тем как остальные, числом 181, назывались «Les Honnets gens». Если мы каждую букву возьмем как число, соответствующее ее месту в алфавите, то окажется, что сумма букв каждого названия даст число членов каждой партии».

О чем свидетельствуют такого рода примеры? Только о случайном совпадении и больше ни о чем. Или вы думаете, что они проявление скрытых закономерностей социальных явлений?

А вот что писал по такого рода проблемам Ф. Экон:

«И потому правильно ответил тот, который, когда ему показали выставленное в храме изображение спасшихся от кораблекрушения принесшему обета и при этом добивались ответа, признает ли теперь он могущество богов, спросил в свою очередь: «А где изображение тех, кто погиб после того, как принес обет?» Таково основание почти всех суеверий — в астрологии, в сноведениях, в поверьях, в предсказаниях и тому подобном.
Люди, услаждающие себя подобного рода суетой, отмечают то событие, которое исполнилось, и без внимания проходят мимо того, которое обмануло, хотя последнее бывает гораздо чаще».

По отношению к этим областям человеческой деятельности сегодня мы должны просто констатировать факт — они не приняты научным сообществом и с точки зрения науки не пополняют наше знание о действительности.

Статус научности чрезвычайно высок. Он представляет собой огромную ценность не только для ученых, но и всего человечества. Понимание этого сегодня важно для каждого человека.

(37)

II. ПРОБЛЕМА ВОЗНИКНОВЕНИЯ НАУКИ

Можно ли установить — хотя бы с относительной хронологической и географической точностью — когда и где возникла наука?

Можно ли узнать дату и место рождения науки?

Трудность ответа на этот вопрос состоит прежде всего в определении содержания понятия «наука», в попытке вычленить те основные характерные ее черты, которые как раз не были чертами «историческими», т.е. преходящими во времени.

Каким образом можно хотя бы попытаться ответить на такой вопрос?

Когда речь идет об исследовании истоков науки, то границы того, что мы называем сегодня «наукой» со всей очевидностью расширяются до границ «культуры». История как раз позволяет осознать, что современная наука уходит в своих истоках в глубинные пласты мировой культуры. Историк науки, ищущий ее культурные истоки, похож на географа, исследующего те участки реки, которые еще не река (ручьи, болота, возвышенности и т.п.), но без которых ее не было бы.

Об этом чрезвычайно выразительно сказал французский математик Лазар Карно (1753—1823): «Науки подобны величественной реке, по течению которой легко следовать после того, как оно приобретает известную правильность; но если хотите проследить реку до ее истока, то его нигде не находят, потому что его нигде нет, в известном смысле источник рассеян по всей поверхности Земли».

Сегодня перед нами наука выступает как семейство многочисленных научных дисциплин,
— одни из которых совсем молоды (вроде кибернетики, математической лингвистики или молекулярной генетики),

— другие появились в XIX веке, (статистическая физика, электродинамика, физическая химия, социология),

— третьи — в Новое Время (например, математический анализ, аналитическая геометрия, динамика),

— а некоторые — уходят своими корнями в Античность или даже в более отдаленные времена (геометрия, астрономия, география, история).

Наука жадно интегрирует опыт всей познавательной деятельности человечества, а также «присваивает» технические изобретения, практический опыт земледельцев, ремесленников, путешественников..., она нуждается в определенной социально-политической обстановке, отстаивает свое «место под солнцем» в качестве особого фрагмента духовной культуры наряду с философией, теологией, технологией... организует себя как социальный институт, требует общественного признания самой профессии ученого, предъявляет требования к системе образования и частично содержательно завладевает ею...

Как здесь выделить существенные события от «фоновых», следствия — от их причин? Историки науки предлагают различные ответы на вопрос о дате и месте рождения науки в зависимости от того, какую теоретическую модель науки они принимают, в известном смысле от того, какому течению в рамках философии науки они принадлежат или неявно следуют, даже не отдавая себе требовательного отчета о природе своего выбора.

Таким образом, определение даты и места рождения науки — это вопрос открыто дискуссионный для сообщества профессиональных историков науки, здесь нет полного согласия.

Можно выделить пять радикальных, достаточно ясно и резко противопоставленных друг другу мнений. Познакомимся кратко с каждым из них.

1. Дата и место рождения науки

— Одна из точек зрения исходит из того, что наука отождествляется с опытом практической и познавательной деятельности вообще.

Тогда отсчет времени надо вести с каменного века, с тех времен, когда человек в процессе непосредственной жизнедеятельности начинает накапливать и передавать другим знания о мире.
Известный английский ученый и общественный деятель Джон Бернал в своей книге «Наука в истории общества» пишет: «Так как основное свойство естествознания заключается в том, что оно имеет дело с действенными манипуляциями и преобразованиями материи, главный поток науки вытекает из практических технических приемов первобытного человека; их показывают и им подражают, но не изучают досконально... Вся наша сложная цивилизация, основанная на механизации и науке, развилась из материальной техники и социальных институтов далекого прошлого, другими словами — из ремесел и обычаев наших предков».

— Многие историки называют другую дату: наука рождается примерно двадцать пять веков назад (примерно V в. до н.э.) в Восточном Средиземноморье, точнее в Древней Греции.

Именно в это время на фоне разложения мифологического мышления возникают первые программы исследования природы, появляются не только первые образцы исследовательской деятельности, но и осознаются некоторые фундаментальные принципы познания природы.

Наука понимается этими историками как сознательное, целенаправленное исследование природы с ярко выраженной рефлексией о способах обоснования полученного знания и о самих принципах познавательной деятельности. Коротко говоря, наука — это особый вид знания, это — знание с его обоснованием.

Уже в Древнем Египте и Вавилоне были накоплены значительные математические знания, но только греки начали доказывать теоремы. Поэтому вполне справедливо считать, что столь специфическое духовное явление возникло в городах-полисах Греции, истинном очаге будущей европейской культуры.

— Третья точка зрения относит дату рождения науки к гораздо более позднему времени, к периоду расцвета поздней средневековой культуры Западной Европы (XII–XIV вв.).

Наука, считают они, возникает в тот период, когда была переосознана роль опытного знания, что связано с деятельнос-

тью английского епископа Роберта Гроссета (1168—1253 гг.), английского францисканского монаха Роджера Бэкона (ок. 1214—1292 гг.), английского теолога Томаса Брадвардина и др.

Эти оксфордские ученые, все — математики и естествоиспытатели, призывают исследователя опираться на опыт, наблюдение и эксперимент,
а не на авторитет предания или философской традиции, что составляет важнейшую черту современного научного мышления. Математика, по выражению Роджера Бэкона, является вратами и ключом к прочим наукам.

Характерной чертой этого периода в развитии духовной культуры Западной Европы была также начинаясья критика аристотелизма, долгие века господствовавшего в природознании.

Таким образом, эта точка зрения прямо противоположна изложенной чуть выше. Она связывает рождение естествознания Нового Времени, а тем самым и науки вообще с постепенным освобождением научного мышления от догм аристотелианских воззрений, т.е. с бунтом против философского спекулятивного мышления.

— Большинство же историков науки считают, что о науке в современном смысле слова можно говорить только начиная с XVI—XVII вв.

Это эпоха, когда появляются работы И.Кеплера, Х.Гюйгенса, Г.Галилея. Апогеем духовной революции, связанной с появлением науки, являются, конечно, работы Ньютона, который, кстати говоря, родился в год смерти Г.Галилея (1643 г.).

Наука в таком понимании — новейшее естествознание, умеющее строить математические модели изучаемых явлений, сравнивать их с опытным материалом, проводить рассуждения посредством мысленного эксперимента.

Рождение науки здесь отождествляется с рождением современной физики и необходимого для нее математического аппарата. В этот же период складывается новый тип отношения между физикой и математикой, плодотворный для обеих областей познания. Надо прибавить, что в XVII веке происходит и признание социального статуса науки, рождение ее в качестве особого социального института. В 1662 г. возникает Лондонское Королевское общество, в 1666 г. — Парижская Академия наук.

— Некоторые (правда, немногочисленные) исследователи сдвигают дату рождения современной науки на еще более позднее время и называют конец первой трети XIX в.

Такого мнения придерживаются те, кто считают существенным признаком современной науки совмещение исследовательской деятельности и высшего образования.
Первенство здесь принадлежит Германии, ее университетам. Новый тип обучения предлагается после реформ Берлинского университета, происходивших под руководством знаменитого и авторитетного естествоиспытателя Вильгельма Гумбольдта. Эти идеи были реализованы наилучшим образом в лаборатории известного химика Юстуса Либиха в Гисене.

Новація состоит в том, что происходит оформление науки в особую профессию.

Рождение современной науки связано поэтому с возникновением университетских исследовательских лабораторий, привлекающих к своей работе студентов, а также с проведением исследований, имеющих важное прикладное значение.

Новая модель образования в качестве важнейшего последствия для остальной культуры имела появление на рынке таких товаров, разработка и производство которых предполагает доступ к научному знанию.

Действительно, именно с середины XIX в. на мировом рынке появляются удобрения, ядохимикаты, взрывчатые вещества, электротехнические товары...

Историки показывают, что для Англии и Франции, не принявших поначалу «немецкой модели» образования, это обернулось резким культурным отставанием. Культ ученых-любителей, столь характерный для Англии, обернулся для нее потерей лидерства в науке.

Этот процесс превращения науки в профессию завершает ее становление как современной науки.

Теперь научно-исследовательская деятельность становится признанно важной, устойчивой социокультурной традицией, закрепленной множеством осознанных норм, — делом столь серьезным, что государство берет на себя некоторые заботы о поддержании этой профессии на должном уровне, причем это делается в порядке защиты общенациональных интересов.

— Иногда можно встретить и такую экстравагантную точку зрения, которая исходит из того, что «подлинная» наука — Наука с большой буквы — еще не родилась, она появится только в следующем веке. Здесь, конечно, мы уже покидаем почву былого, почву истории науки и попадаем в область социальных проектов.
2. Миф. Технология. Наука.

Попробуем задать себе вопрос: является ли возникновение науки некой «железной» закономерностью в развитии человеческой истории, могут ли культуры, обладая разнообразными познаниями и техническими навыками, не создавать тот тип производства знания, который получил имя «наука»?

В большинстве своем историки науки согласны с тем, что такое возможно.

В Египте, Месопотамии, Индии, Китае, Центральной и Южной Америке доколумбовой эпохи существовали великие цивилизации, накопившие гигантский и по-своему глубокий, своеобразный опыт производственных навыков, ремесел и знаний, но не создавшие науки в современном смысле слова.

В технологическом плане Поднебесная империя Китая ощутимо обгоняла западноевропейскую цивилизацию вплоть до XV века. Китай дал миру порох, компас, книгопечатание, механические часы и технику железного литья, фарфор, бумагу и многое, многое другое. Китайцы смогли развить великолепную технику вычислений и применить ее во многих областях практики.

По мнению известного английского историка Джозефа Нидама, между I в. до н.э. и XV в. н.э. с точки зрения эффективности приложения человеческих знаний к нуждам человеческой практики китайская цивилизация была более высокой, чем западная. Но науки как таковой эта империя не создала.

(43)

В Индии религиозные каноны требовали строго обороняющего звука, священных санскритских текстов, и ради этой цели была изобретена поражающая своей детальностью грамматика, позволяющая очень точно описать звуковой строй языка, которая приводила в изумление даже лингвистов современности, ибо она «предвосхитила» теоретическую фонологию.

Да и мало ли других удивительных достижений насчитывает индийская культура! Достаточно вспомнить ее математику, медицину, разнообразную ремесленную практику... Однако познание внешнего мира не признавалось в Древней Индии высшей ценностью и благом для человека. Говорят, когда Будду спрашивали о природе мира, его происхождении и законах, он, как свидетельствует традиция, отвечал «благородным молчанием». Человек, в теле которого застряла стрела, говорил Будда, должен ста-
раться извлечь ее, а не тратить время на размышления по поводу того, из какого материала она сделана и кем пушен.

Древний Вавилон создал развитую арифметику, на которой базировались тонкие геометрические измерения и обработка астрономических наблюдений. Вавилонская астрономия, в свою очередь, была средством государственного управления и регулирования хозяйственной жизни: она была нужна прежде всего для составления календарей и предсказания разлива рек.

И нам хорошо известно, что учителями древних греков в области математики и философии были прежде всего египтяне, которые сумели передать им многое из того драгоценного познавательного опыта, который был накоплен в Вавилоне и Месопотамии, добавив при этом то, что было накоплено ими самими.

В каком же смысле те историки науки, которые считают местом рождения науки Древнюю Грецию, выводят из рассмотрения эти замечательные достижения более древних культур?

Речь идет о том, что научное познание мира — это не просто объяснение его устройства, которое дает миф, и не просто технологические знания, которые могут вырабатываться, опираясь и на указания мифа, и на практическую повседневную жизнь, и быть «побочным продуктом» магических и ритуальных действий религиозного содержания.

(44)

Ни миф, ни технология сами по себе никогда не превращаются в науку.

Каким же образом мог произойти этот духовный скачок, столь важный в перспективе мировой истории?

Известный историк античной науки И.Д.Рожанский пишет: «В странах Ближнего Востока математические, астрономические, медицинские и иные знания имели прикладной характер и служили только практическим целям. Греческая наука с момента своего зарождения была наукой теоретической; ее целью было отыскание истины, что определило ряд ее особенностей, оставшихся чуждыми восточной науке».

— Так, ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач. Любое решение, дававшее практически приемлемые результаты, считалось хорошим.

— Напротив, для греков имело значение только строгое решение, полученное путем логических рассуждений.
— Вавилонские астрономы умели наблюдать и предсказывать многие небесные явления, включая расположение пяти планет, но они не ставили вопроса о том, почему эти явления повторяются.

— Для греков же именно этот вопрос был основным, и они начали строить модель Космоса.

Первичным источником космологических учений для греческих мыслителей были, конечно, восточные мифы (например, идея первичного бесформенного или неопределенного состояния Вселенной, чаще всего представляющегося в виде водной бездны), однако в греческом контексте египетский миф претерпевает такую трансформацию, что становится философией, т.е. учением, которое должно быть рационализировано, которое можно опровергнуть и т.п.

Что же случилось?

Общий духовный скачок, который произошел в Греции в VI — V вв. до н.э., подчас именуется «греческим чудом».

В течение очень небольшого исторического срока маленькая Эллада стала лидером среди народов средиземноморского бассейна, опередив более древние и могущественные цивилизации Вавилона и Египта.

Это время великого перелома в жизни греческого общества, эпоха освобождения от власти родовых вождей, возникновения самоуправляющихся городов-полисов, интенсивного развития мореплавания, торговли.

Это — эпоха зарождения такой формы государственного устройства, которая греками же была названа «демократией» (властью народа).

Активность народа, невиданное и ранее невозможное в условиях восточных деспотий участие его в управлении социальной жизнью, требовало соответствующих форм выражения, и они были удачно найдены.

Прежде всего греческие полисы стихийно создали формы жизни, обеспечивающие возможность довольно свободной, открытой коммуникации и информационного обмена. В центре города-полиса располагалась агора — рыночная площадь. Это было место, на котором происходило народное собрание, но оно было и рынком, где продавались съестные припасы и ремесленные изделия. В приморских городах, например в Милете, агора находилась близ гавани.

Постепенно вокруг центральной площади начали концентрироваться различные общественные здания и храмы. Агора начала обстраиваться портиками, где посетители находили зимой защиту от дождей и холодного
ветра, а летом — от зноя. Широкое обсуждение текущих дел, выбор должностных лиц, открытый суд приводили к столкновению мнений и интересов. Следствием было появление ораторского искусства, которое в кратчайшие сроки достигло высот совершенства.

Надо подчеркнуть, что искусство оратора — это искусство убеждения в условиях, когда каждый вправе сомневаться, требовать доказательств, задавать вопросы и возражать. Подобное невозможно во время проповеди, школьного урока или в условиях, когда отдает приказ облаченное непререкаемой властью лицо.

В лоне ораторского искусства рождалась логика.

В правилах «чистой рациональности», неумолимых сегодня законах логики, давно заглохли возбужденные крики толпы и давнее красноречие оратора, но именно там — в спорах об общественных работах, о ценах, о виновности подсудимого и т.п. — получили они свой исток. Логика грецких, таким образом, с самого начала носила характер диалога, логики спора; она была механизмом человеческого общения в условиях, когда традиционные, мифологические координаты общественной жизни уже пришли в упадок. В дальнейшем эти правила стали не только нормами коммуникации, но и правилами мышления вообще.

Итак, наука (как рациональное мышление) и демократия связаны изначально.

И законы Солона (594 г. до н.э.), реформировавшие общественную жизнь Афин, были одним из тех деяний, отдаленным последствием которых явилось «чудо» греческой философии и науки.

3. Проблема «европоцентризма»

В какой степени все же правомерно считать современную науку плодом западноевропейской цивилизации?

Известный и авторитетный историк науки Эдгар Цильзель (1891—1944) считал, что объективный исследователь должен с непреложностью увидеть: научный подход к миру — довольно позднее достижение в истории человечества. Он писал:

«Развитая наука появляется только однажды, а именно в современной западной цивилизации. Мы слишком склонны рассматривать себя и свою цивилизацию как естественную вершину человеческого развития. Из этой самонадеянной точки зрения вытекает уверенность, будто человек
просто становился все более и более смышленным, пока в один прекрасный день не появились великие исследователи-пионеры и не создали науку как последнюю стадию однолинейного интеллектуального развития. Таким образом, не учитывается тот факт, что развитие человеческого мышления шло во многих качественно различных направлениях, где «научное» является лишь одной из ветвей».

С точки зрения Э.Цильзеля, при переходе от феодализма к раннему периоду капитализма человеческое общество претерпевает фундаментальные изменения, создавая необходимые условия для возникновения научного метода. Эти общие условия, или предпосылки генезиса науки состоят в следующем.

— Перемещение центра культурной жизни в города. Наука, будучи светской и невоенной по духу, не могла развиваться среди духовенства и рыцарства, она могла развиваться только среди горожан.

— Конец средневековья был периодом быстрого технологического прогресса. В производстве и в военном деле стали использоваться машины. Это, с одной стороны, ставило задачи для механиков и химиков, а с другой — способствовало развитию каузального мышления и в целом ослабляло магическое мышление.

— Развитие индивидуальности, разрушение оков традиционализма и слепой веры в авторитеты. «Индивидуализм нового общества есть предпосылка научного мышления, — подчеркивал Э.Цильзель.

— Ученый также доверяет в конечном счете только своему собственному разуму и склонен быть независимым от веры в авторитеты. Без критичности нет науки. Критический научный дух (который совершенно неизвестен всем обществам, где отсутствует экономическая конкуренция) есть наиболее сильное взрывчатое вещество, которое когда-либо произвело человеческое общество».

— Феодальное общество управлялось традицией и привычкой, а возникновение экономической рациональности способствует развитию рациональных научных методов, основанных на вычислениях и расчетах.

Как видим, аргументы Э.Цильзеля говорят примерно о той же социальной атмосфере, которая, с точки зрения историков античности, способствовала развитию науки в Древней Греции.

Однако Джозеф Нидам, известный прежде всего своими глубокими исследованиями науки древнего и средневекового Китая, считает совер-
шенно недопустимой точку зрения, согласно которой мировая цивилизация обязана рождением науки исключительно Западной Европе.

«Так уж получилось, — пишет Дж. Нидам, — что история науки, какой она родилась на Западе, имеет врожденный порок ограниченности — тенденцию исследовать только одну линию развития, а именно — линию от греков до европейского Ренессанса. И это естественно. Ведь то, что мы мо-

жем назвать по-настоящему современной наукой, в самом деле возникло только в Западной Европе во времена «научной революции» XV—XVI столетий и достигло зрелой формы в XVII столетии. Но это далеко не вся история, и упоминать только об этой части было бы глубоко несправедливо по отношению к другим цивилизациям. А несправедливость сейчас означает и неистинность, и недружелюбие — два смертных греха, которые человечество не может совершать безнаказанно».

Однако, как мы видим, Дж.Нидам предостерегает против недооценки великих цивилизаций Востока, но вовсе не отрицает сам факт научной революции XVI—XVII вв., происшедшей в Западной Европе. Он просто иначе ставит вопрос о возникновении современной науки, и вопрос вновь выглядит парадоксальным. Нидам пишет:

«Изучение великих цивилизаций, в которых не развилась стихийно современная наука и техника, ставит проблему причинного объяснения того, каким способом современная наука возникла на европейской окраине старого мира, причем поднимает эту проблему в самой острой форме. В самом деле, чем большими оказываются достижения древних и средневековых цивилизаций, тем менее приятной становится сама проблема».

Так называемая проблема европоцентризма, иначе выражающаяся, ставит со всей остротой вопрос о более детальном и глубоком изучении социальных аспектов бытия науки, анализа тех социокультурных предпосылок, в которых нуждается ее развитие.

Никто не может отрицать достижений великих цивилизаций древности, на которых покоялась древнегреческая ученость, никто не сомневается в том, что великие цивилизации Азии и доколумбовой Америки также обладали важным познавательным опытом.

А. Койре напоминал о важнейшей роли арабского мира в том, что бесценное наследие античного мира было усвоено и передано далее Западной Европе.
«...Именно арабы явились учителями и воспитателями латинского Запада, — говорил А.Койре. — ... Ибо если первые переводы греческих философских и научных трудов на латинский язык были осуществлены не непосредственно с греческого, а с их арабских версий, то это произошло не только потому, что на Западе не было больше уже — или еще — людей, знающих древнегреческий язык, но и еще (а быть может, особенно) потому, что не было никого, способного понять такие трудные книги, как «Физика» или «Метафизика» Аристотеля или «Альмагест» Птолемея, так что без помощи Фараби, Авиценны или Аверроэса латинянское никогда к такому пониманию и не пришли бы. Для того, чтобы понять Аристотеля и Платона, недостаточно — как ошибочно часто полагают классические филологи — знать древнегреческий, надо знать еще и философию. Латинская же языческая античность не знала философии».

Можно со всей основательностью сделать вывод, что ни один географический регион, ни один конкретный народ не может в полной мере считать себя «чудотворцем», породившим удивительное детище современную науку.

По своему содержанию наука глубоко наднациональна и способна впитать завоевания любых эпох и народов.

Поэтому, в частности, и сама наука призывает к бережной реконструкции того, что знали и умели самые разные народы, населявшие когда-либо Землю.

4. На гребне «социальной волны»

Рассмотренная нами выше полемика косвенным образом показывает глубокую обоснованность той концепции науки, которая относит ее рождение к XVI—XVII вв.

Именно в этот период происходит нечто почти осозаемо социологически значимое: наука превращается в особый институт, объявляет о своих целях и о тех правилах, которые будут соблюдать те, кто посвятит свою жизнь изучению вещей «как они есть».

Реальному появлению науки на «белый свет», т.е. ее институциональному оформлению, предшествовало широкое общественное движение, шедшее под лозунгами демократических реформ, выдвигавшее смелые проекты развития исследовательской деятельности познания природы и перестройки уже существующего университетского образования.
1660 г. — дата рождения нового общественного феномена, появления Лондонского Королевского общества естествоиспытателей, утвержденного Королевской хартией в 1662 г.

1666 г. — создание во многом похожей по целям организации в Париже — Академии наук.

Эти учреждения знаменовали собой общественное признание победы определенного интеллектуального умонастроения, которое зародилось существенно ранее (XIII—XIV вв.) и которое называлось «позитивной экспериментальной философией».

Как видим, наука впервые социализируется в тоге философии, хотя и особой, — «экспериментальной».

Основание этих учреждений привело к появлению первых «писанных» решений относительно исследовательских программ и главных содержательных компонент понятия «наука».

Теперь впервые ясственно были сформулированы определенные научные нормы и установлены требования их соблюдения.

Обратим внимание на то, что наука этого периода была оторвана от образования: обычный естествоиспытатель XVII в. был любителем. Профессионального естественнонаучного или технического образования просто еще не существовало. Лондонское Королевское общество объединяло ученых-любителей в добровольную организацию с определенным уставом, который был санкционирован высшей государственной властью того времени — королем.

«Волна» социального движения, на гребне которой появились новые учреждения, включала борьбу против авторитета древности, осознание возможного прогресса, демократизм, ориентацию на высокие цели служения обществу, педагогические идеалы и дух гуманизма, интерес к человеку.

Надо, правда, отметить, что становление естествознания в этот период не ставило проблемы перестройки традиционных культурных ценностей, адаптации их к ценностям науки. «Наука достигла узаконения, — пишет немецкий социолог Ван ден Дейль, — не за счет навязывания ее ценностей обществу в целом, а благодаря данной ею гарантии невмешательства в деятельность господствующих институтов».
Иными словами, наука начала с того, что сама резко отграничила себя от других феноменов культуры и их ценностей, т.е. от религии, морали, образования.

Только эти гарантии невмешательства в другие сферы дали ей возможность выживания на арене социального действия того времени.

В уставе Лондонского королевского общества, который был сформулирован Робертом Гуком, записано, что целью Общества является «совершенствование знания о естественных предметах и всех полезных искусствах... с помощью экспериментов (не вмешиваясь в богословие, метафизику, мораль, политику, грамматику, риторику или логику)».

Наука — это опытное познание, в XVII в. не уставали это повторять.

Сам король в Первой хартии Королевского общества подчеркивает эту ориентацию: «Мы особенно приветствуем те философские исследования, которые подкрепляются солидными экспериментами и направлены либо на расширение новой философии, либо на улучшение старой».

Историки отмечают, что Королевское общество стремилось пропагандировать и поддерживать, так сказать, экзальтированный эмпиризм. Выдвинутая кем-то гипотеза подвергалась проверке на опыте, в эксперименте и либо принималась и сохранялась, либо неминуемо отвергалась, если «свидетельство» эмпирического факта было для нее неблагоприятно. Члены Общества отвергали работы, выполненные по другим нормам.

Так, в 1663 г. некому Эккарду Лейхнеру, предложившему работу философско-теологического содержания для обсуждения на заседании Общества, было официально отвечено: «Королевское общество не заинтересовано в знании по схоластическим и теологическим материям, поскольку единственная его задача — культивировать знание о природе и полезных искусствах с помощью наблюдения и эксперимента и расширять его ради обеспечения безопасности и благосостояния человечества. Таковые границы деятельности британской ассамблеи философов, как они определены королевской хартией, и ее члены не считают возможным нарушать эти границы».

Отказ другому автору звучал столь же твердо и даже не так вежливо:

«Вы не можете не знать, что целью данного Королевского института является продвижение естественного знания с помощью экспериментов и в рамках этой цели среди других занятий его члены приглашают всех способных людей, где бы они ни находились, изучать Книгу Природы, а не писания остроумных людей».

(52)
Ван ден Дейль считает, что наука заплатила достаточно высокую плату за свое превращение в признанный обществом институт. Эта плата состояла в отречении от всех опасных лозунгов и целей, которые еще недавно связывали науку с широким демократическим движением за обновление образования, за политические и социальные реформы.

Отныне существование естествознания («экспериментальной философии») было нормативно закреплено, и в XVII в. появилась совершенно новая социальная роль — естествоиспытателя, которая теперь должна была разыгрываться по совершенно определенным правилам.

То, что сегодняшнему взгляду кажется делом сугубо личной рефлексии ученых, следствием ее самоопределения, непременной компонентой ее Я-образа, — т.е. проведение границы, отделяющей науку от ненауки, — было в XVII в. историческим компромиссом, который преследовал не столько какие-то содержательные цели науки, сколько использовал возможность получить «место под солнцем» в социальном и культурном пространстве того времени.

5. Из плена времени

Великие произведения духовной культуры, будь то литература или наука, нельзя объяснить только эпохой их создания.

Известный наш литературовед М.М.Бахтин пишет: «Великие произведения литературы подготовляются веками, в эпоху же их создания снимаются только зрелые плоды длительного и сложного процесса вызревания».

Этим словам буквально вторит историк математики Ван дер Варден: «Понять труды Ньютона, не зная античной науки, невозможно. Ньютон ничего не творил из ничего. Без огромных трудов Птолемея, дополнившего и завершившего античную астрономию, была бы невозможна и «Новая астрономия» Кеплера, а вслед за ней и механика Ньютона. Без конических сечений Аполлония, которые Ньютон знал в совершенстве, точно так же был бы немыслим и закон тяготения. И интегральное исчисление Ньютона можно понять только как развитие архимедовых методов для определения площадей и объемов. История механики как точной науки начинается только с установления закона рычага, определения направленного вверх давления воды и нахождения центров тяжести у Архимеда».
Великий человек в науке всегда стоит «на плечах» своих гигантов-предшественников.

В своей преемственности наука, научные труды прорывают границы узкого существования в рамках эпохи, их создавшей, и живут в границах, по выражению М.М.Бахтина, «большого времени».

В современной науке живут темы и идеи Аристотеля, например, о необходимости изучать даже «ничтожного червяка», идеи Пифагора и Платона о том, что математические формы представляют собой сущность мира, живут средневековые идеи о красоте бесконечного, доказательства гармонии Вселенной Иоганна Кеплера и тому подобное.

В свое интеллектуальное значение.

Вслед за М. М. Бахтинным, который говорит о развитии литературы, можно также утверждать, что посмертная жизнь великих произведений науки парадоксальна.

Чем глубже произведение, чем оно совершеннее, тем более оно обогащается со временем все новыми значениями, новыми смыслами.

Значительные произведения как бы перерастают то, чем они были в эпоху своего создания.

М. М. Бахтин говорит: «Мы можем сказать, что ни сам Шекспир, ни его современники не знали того «великого Шекспира», какого мы теперь знаем». Равным образом можно сказать, что современники не знали «великого Ньютона». Максвелл умер, еще не зная, что он — гений, а мы знаем «великого Максвелла» го-

раздо лучше, чем его современники. Даже Ч.Дарвин, не обойденный при- жизненной славой, не мог подозревать, что схема «естественного отбора» станет категориальной схемой мышления вообще, что она потеряет непосредственную связь с биологией и будет фигурировать в трудах по кибернетике и теории познания.

«Автор — пленник своей эпохи, своей современности, — говорит М.М.Бахтин. — Последующие времена освобождают его из этого плена, и литературоведение призвано помочь этому освобождению».

Но не так ли и автор открытий в одной научной области вдруг начинает жить как человек, сделавший вклад в развитие дисциплины, о существовании которой он и не подозревал!
Историческое развитие научных знаний постоянно «освобождает» научные открытия и результаты из «плена» узких предметных интерпретаций.

— Во-первых, развитие знаний представляет собой непрерывный динамичный процесс, где уже созданные системы знаний постоянно перекраиваются, перестраиваются, выбрасывая одни разделы и вписывая другие, взятые, казалось бы, из далеких областей.

— Во-вторых, речь идет о том, что перед взором каждого труженика науки стоят как образцы действия других исследователей, и этот «обмен опытом» происходит постоянно, нарушая границы веков и пространств.

В последнем случае мы сталкиваемся с ситуацией, когда фольклорист В.Я.Пропп ссылается на биологические дисциплины (анатомию и морфологию) как на образец, его вдохновляющий.

Физик Нильс Бор, формулируя свой принцип дополнительности, опирается на «Прincipы психологии» Уильяма Джемса.

Биолог Ч.Дарвин вычитывает исходную аналогию своей теории эволюции из работ демографа Т.Мальтуса.

Всеобщим поветрием нашего времени является «математизация», когда науки, весьма далекие от точных измерений (биология, геология, история) все же ориентируются на физику и ее методологический опыт, приведший к успеху («Книга Природы написана на языке математики»).

А Вернер Гейзенберг, объясняя психологическое состояние создателей квантовой физики, говорит о мужестве Христофора Колумба: «Когда спрашивают, в чем, собственно, заключалось великое достижение Христофора Колумба, от-}

(55) крывшего Америку, то приходится отвечать, что дело не в идее использовать шарообразную форму земли, чтобы западным путем приплыть в Индию; эта идея уже рассматривалась другими. Дело было не в тщательной подготовке экспедиции, в мастерском оснащении кораблей, что могли осуществить опять-таки и другие. Но наиболее трудным в этом путешествии-открытии, несомненно, было решение оставить всю известную до сих пор землю и плыть так далеко на запад, чтобы возвращение назад с имеющимися припасами было уже невозможно.

Аналогично этому настоящую новую землю в той или иной науке можно достичь лишь тогда, когда в решающий момент имеется готовность оставить то основание, на котором покойтся прежняя наука, и в известном смысле совершить прыжок в пустоту.}

kupcov_v_i_i_dr_filosofiya_i_metodologiya_nauki
В своем историческом прогрессе наука, таким образом, постоянно опирается на прошлые достижения, сплошь и рядом меняя их содержание почти до неузнаваемости и порождая иллюзию поступательного своего движения в одной-единственной, идущей от древности социокультурной традиции.

Историк науки может вполне убедительно продемонстрировать иллюзорность такого представления о траектории научного развития, но он не будет спорить с тем, что возможность ассимилировать познавательный опыт прошлого самым различным образом — также удивительное свойство человеческой цивилизации, и в этом смысле готов содействовать выскобождению великих научных трудов из «плена» породившего их времени.

(56)

III. «БОЛЬШАЯ НАУКА»

«В настоящее время мы все осознаем, — писал немецкий философ К.Ясперс, — что находимся на переломном рубеже истории. Это — век техники со всеми ее последствиями, которые, по-видимому, не оставят ничего из всего того, что на протяжении тысячелетий человек обрел в области труда, жизни, мышления, в области символики».

Наука и техника в XX столетии стали подлинными локомотивами истории. Они придали ей беспрецедентный динамизм, предоставили во власть человека огромную силу, которая позволила резко увеличить масштабы преобразовательной деятельности людей.

Радикально изменив естественную среду своего обитания, освоив всю поверхность Земли, всю биосферу, человек создал «вторую природу» — искусственную, которая для его жизни не менее значима, чем первая.

Сегодня благодаря огромным масштабам хозяйственной и культурной деятельности людей интенсивно осуществляются интеграционные процессы.

Взаимодействие различных стран и народов стало настолько значительным, что человечество в наше время представляет собой целостную систему, развитие которой реализует единый исторический процесс.

1. Особенности современной науки

Что же представляет собой наука, которая привела к столь значительным изменениям во всей нашей жизни, во всем облике современной
цивилизации? Она сама оказывается сегодня удивительным феноменом, радикально отличающимся от того ее образа, который вырисовывался еще в прошлом веке. Современнную науку называют «большой наукой».

(57)

Каковы же основные характеристики «большой науки»? Резко возросшее количество ученых

Численность ученых в мире, человек

<table>
<thead>
<tr>
<th>Исторический период</th>
<th>Число ученых</th>
</tr>
</thead>
<tbody>
<tr>
<td>На рубеже XVIII—XIX вв.</td>
<td>около 1 тыс.</td>
</tr>
<tr>
<td>В середине прошлого века</td>
<td>10 тыс.</td>
</tr>
<tr>
<td>В 1900 г.</td>
<td>100 тыс.</td>
</tr>
<tr>
<td>Конец XX столетия</td>
<td>свыше 5 млн.</td>
</tr>
</tbody>
</table>

Наиболее быстрыми темпами количество людей, занимающихся наукой, увеличивалось после второй мировой войны.

Удвоение числа ученых (50—70 гг.)

- Европа — за 15 лет
- США — за 10 лет
- СССР — за 7 лет

Такие высокие темпы привели к тому, что около 90% всех ученых, когда-либо живших на Земле, являются нашими современниками.

Рост научной информации

В ХХ столетии мировая научная информация удваивалась за 10—15 лет. Так, если в 1900 г. было около 10 тысяч научных журналов, то в настоящее время их уже несколько сотен тысяч. Свыше 90% всех важнейших научно-технических достижений приходится на ХХ в.

Такой колоссальный рост научной информации создает особые трудности для выхода на передний край развития науки. Ученый сегодня должен прилагать огромные усилия для того, чтобы быть в курсе тех достижений, которые осуществляются даже в узкой области его специализации. А ведь он должен еще получать знания из смежных областей науки, информацию о развитии науки в целом, культуры, политики, столь необходимые ему для полноценной жизни и работы и как ученому, и как просто человеку.
Изменение мира науки

Наука сегодня охватывает огромную область знаний. Она включает около 15 тысяч дисциплин, которые все теснее взаимодействуют друг с другом. Современная наука дает нам целостную картину возникновения и развития Метagalактики, появления жизни на Земле и основных стадий ее развития, возникновения и развития человека. Она постигает законы функционирования его психики, проникает в тайны бессознательного, которое играет большую роль в поведении людей. Наука сегодня изучает все, даже саму себя — то как она возникла, развивалась, как взаимодействовала с другими формами культуры, какое влияние оказывала на материальную и духовную жизнь общества.

Вместе с тем, ученые сегодня вовсе не считают, что они постигли все тайны мироздания.

В этом отношении представляется интересным следующее высказывание видного современного французского историка М. Блока о состоянии исторической науки: «Эта наука, переживающая детство, как все науки, чьим предметом является человеческий дух, это запоздальный гость в области рационального познания. Или, лучше сказать: состарившееся, прозябавшее в эмбриональной форме повествование, долго перегруженное мыслями, еще дольше прикованное к событиям, наиболее непосредственно доступным, как серьезное аналитическое явление, история еще совсем молодая».

В сознании современных ученых имеется ясное представление об огромных возможностях дальнейшего развития науки, радикального изменения на основе ее достижений наших представлений о мире и его преобразованиях. Особые надежды здесь возлагаются на науки о живом, человеке, обществе. По мнению многих ученых, достижения именно в этих науках и широкое использование их в реальной практической жизни будут во многом определять особенности XXI века.

Превращение научной деятельности в особую профессию

Наука еще совсем недавно была свободной деятельностью отдельных ученых, которая мало интересовала бизнесменов и совсем не привлекала внимания политиков. Она не была профессией и никак специально не финансировалась. Вплоть до конца XIX в. у подавляющего большинства ученых научная деятельность не была главным источником их материального обеспечения. Как правило, научные исследования проводились в то время
в университетах, и ученые обеспечивали свою жизнь за счет оплаты их преподавательской работы.

Одна из первых научных лабораторий была создана немецким химиком Ю. Либихом в 1825 г. Она приносила ему значительные доходы. Однако это не было характерным для XIX в. Так, еще в конце прошлого столетия, известный французский микробиолог и химик Л. Пастер на вопрос Наполеона III, почему он не извлекает прибыли из своих открытий, ответил, что ученые Франции полагают унизительным зарабатывать деньги таким образом.

Сегодня ученый — это особая профессия. Миллионы ученых работают в наше время в специальных исследовательских институтах, лабораториях, различного рода комиссиях, советах. В XX в. появилось понятие «научный работник». Нормой стало выполнение функций консультанта или советника, их участие в выработке и принятии решений по самым разнообразным вопросам жизни общества.

2. НАУКА И ОБЩЕСТВО

Наука является теперь приоритетным направлением в деятельности государства.

Во многих странах проблемами ее развития занимаются особые правительственные ведомства, специальное внимание им уделяется даже президентами государств. В развитых странах на науку сегодня затрачивается 2—3% всего валового национального продукта. При этом финансирование относится не только к прикладным, но и к фундаментальным исследованиям. И оно осуществляется как отдельными предприятиями, так и государством.

Внимание властей к фундаментальным исследованиям стало резко возрастать после того, как 2 августа 1939 г. А. Эйнштейн сообщил Д. Рузвельту о том, что физиками выявлен новый источник энергии, который дает возможность создать атомную бомбу. Успех «Манхеттенского проекта», который привел к созданию атомной бомбы, а затем запуск 4 октября 1957 года Советским Союзом первого спутника имели большое значение для осознания необходимости и важности проведения государственной политики в области науки.

Наука не может сегодня обойтись без помощи общества, государства.
Наука в наше время — это дорогое «удовольствие». Она требует не только подготовки научных кадров, оплаты труда ученых, но и обеспечения научных исследований приборами, установками, материалами, информацией. В современных условиях это огромные деньги. Так, только строительство современного синхрофазotrona, необходимого для проведения исследований в области физики элементарных частиц, требует нескольких миллиардов долларов. А сколько таких миллиардов нужно для осуществления программ освоения космоса!

Наука сегодня испытывает огромное давление со стороны общества.

В наше время наука стала непосредственной производительной силой, важнейшим фактором культурного развития людей, инструментом политики. Вместе с тем, резко возросла и ее зависимость от общества.

Как говорил П.Л.Капица, наука стала богатой, но потеряла свою свободу, превратилась в рабыню.

Коммерческая выгода, интересы политиков существенно воздействуют сегодня на приоритеты в области научно-технических исследований. Кто платит, тот и заказывает музыку.

Поразительным свидетельством этого является то, что около 40% ученых в настоящее время так или иначе связаны с решением задач, имеющих отношение к военным ведомствам.

Но общество влияет не только на выбор наиболее актуальных для исследования проблем. В определенных ситуациях оно посягает и на выбор методов исследования, и даже на оценку полученных результатов. Классические примеры политики в отношении к науке дает история тоталитарных государств.

Фашистская Германия

Здесь была развязана политическая кампания борьбы за арийскую науку. В результате к руководству наукой пришли преданные нацизму и малокомпетентные люди. Многие крупнейшие ученые подверглись преследованиям.

Среди них оказался, например, и великий физик А.Эйнштейн. Его фотография вошла в альбом, изданый фашистами в 1933 г., в котором были представлены противники нацизма. «Еще не повешен» — такой комментарий сопровождал его изображение. Книги А.Эйнштейна публично были сожжены в Берлине на площади перед государственной оперой.
Ученым запрещалось развивать идеи А.Эйнштейна, которые представляли важнейшее направление в теоретической физике.

CCCP

В нашей стране, как известно, благодаря вмешательству в науку политиков, с одной стороны, стимулировались, например, освоение космоса, исследования, связанные с использованием атомной энергии, а с другой — активно поддерживались антинаучная позиция в генетике Т.Д.Лысенко, выступления против кибернетики. Идеологические догмы, внедряемые КПСС и государством, деформировали науки о культуре, человеке, обществе, фактически ликвидировав возможности их творческого развития.

Из жизни А. Эйнштейна

О том, как непросто жить ученому, даже в современном демократическом государстве, свидетельствует судьба А.Эйнштейна. Один из самых замечательных ученых всех времен, великий гуманист, став уже в 25 лет знаменитым, он имел огромный авторитет не только как физик, но и как человек, способный дать глубокую оценку происходящим в мире событиям. Прожив последние десятилетия в тихом американском городе Принстоне, занимаясь теоретическими исследованиями, А.Эйнштейн ушел из жизни в состоянии трагического разрыва с обществом. В своем завещании он просил не совершать во время похорон религиозных обрядов и не устраивать каких-либо официальных церемоний. По его желанию, не было объявлено о времени и месте его похорон. Даже уход из жизни этого человека прозвучал как мощный моральный вызов, как упрек нашим ценностям и стандартам поведения.

Удастся ли когда-нибудь ученым обрести полную свободу исследований?

Трудно ответить на этот вопрос. Пока дело обстоит так, что чем большее значение для общества приобретают достижения науки, тем в большей зависимости от него оказываются ученые. Об этом свидетельствует опыт XX столетия. Самое демократичное отношение власти к науке вряд ли когда-либо преодолеет взгляд, согласно которому функция исследования состоит не в том, чтобы искать, а в том, чтобы находить. Постоянное давление общества, требующее от ученого результативности его исследований, конечно, вполне понятно. Но вместе с тем, оно создает излишнюю напряженность в его жизни и мешает творчеству.

Одной из важнейших проблем современной науки является вопрос об ответственности ученых перед обществом.
Наибольшую остроту он приобрел после того, как американцы в августе 1945 г. сбросили атомные бомбы на Хиросиму и Нагасаки. Насколько ответственны ученые за последствия применения их идей, технических разработок? В какой мере они причастны к многочисленным и многообразным негативным последствиям использования достижений науки и техники в XX столетии? Ведь и массовые уничтожения людей в войнах, и разрушение природы, и даже распространение низкопробной культуры не были бы возможны без использования современной науки и техники.

Вот как описывает бывший государственный секретарь США Д. Ачесон встречу между Р.Оппенгеймером, возглавлявшим в 1939—1945 гг. работы по созданию атомной бомбы, и президентом США Г.Трумэном, которая состоялась после атомной бомбардировки городов Японии. «Как-то раз, — вспоминает Д.Ачесон, — я сопровождал Оппи (Оппенгеймера) к Трумэну. Оппи ломал себе пальцы, говоря: "У меня руки в крови". Позднее Трумэн сказал мне: "Больше не приводите ко мне этого дурака. Бомбу сбросил не он. Я сбросил бомбу. Меня тошнит от такой слезливости"».

Может быть, Г.Трумэн был прав? Дело ученого решать те задачи, которые перед ним ставит общество, власть. А остальное не должно его касаться.

Вероятно, многие государственные деятели поддержали бы такую позицию. Но она неприемлема для ученых. Они не хотят быть марионетками, безропотно исполняющими чужую волю и активно включаются в политическую жизнь.

Прекрасные образцы такого поведения продемонстрировали выдающиеся ученые нашего времени А.Эйнштейн, Б.Рассел, Ф.Жолио-Кюри, А.Д.Сахаров. Их активная борьба за мир и демократию была основана на ясном понимании того, что использование достижений науки и техники на благо всем людям возможно только в здоровом, демократическом обществе. «Я убежден, — говорил А.Д.Сахаров в своей лекции, которую он прочитал при вручении ему Нобелевской премии мира в 1975 г., — что международное доверие, взаимопонимание, разоружение и международная безопасность невозможно без открытости общества, свободы информации, свободы убеждений, гласности, свободы поездок и выбора страны проживания. Я убежден также, что свобода убеждений, наряду с другими гражданскими свободами, является основой научно-технического прогресса и гарантией от использования его достижений во вред человечеству...»
Ученый не может жить вне политики. Но нужно ли ему стремиться стать президентом?

Наверно, прав был французский историк науки, философ Ж.Саломон, когда он писал, что О.Конт «не первый из философов, веривших, что настанет день, когда власть будет принадлежать ученым, но он, конечно, последний, у кого были причины верить в это». Дело не в том, что в ост-рейшей политической борьбе ученые не смогут выдержать конкуренции. Мы знаем, что имеется немало случаев, когда они получают самые высокие полномочия в государственных структурах, в том числе и в нашей стране.

Здесь важно другое.

Необходимо построить такое общество, в котором была бы потребность и возможность при решении всех вопросов опираться на науку и учитывать мнение ученых.

Эту задачу решить куда сложнее, чем составить правительство из докторов наук.

Каждый должен заниматься своим делом. А дело политика требует особой профессиональной подготовки, которая отнюдь не исчерпывается приобретением навыков научного мышления.

(64)

Другое дело — активное участие ученых в жизни общества, их влияние на выработку и принятие политических решений. Ученый должен оставаться ученым. И это его высочайшее предназначение. Зачем ему бороться за власть?

«Здоров ли ум, коли корона манит!» — восклицал один из героев Еврипida.

Вспомним, что А.Эйнштейн отказался от предложения выдвинуть его в качестве кандидата на пост президента Израиля. Вероятно, так же поступило бы подавляющее большинство настоящих ученых.

(65)

IV. ОБЩЕСТВО И НАУЧНО-ТЕХНИЧЕСКИЙ ПРОГРЕСС

XX столетие — это век научно-технического прогресса. Какова же роль науки и техники в нашей жизни? Каково значение научно-технического прогресса в истории мировой цивилизации?

Выдающийся российский ученый В.И.Вернадский считал, что наука и техника превратили деятельность человека в особую геологическую си-
лу, преобразовавшую всю поверхность Земли, существенно повлиявшую на биосферу.

Они изменили структуру и характер общественных процессов, весь образ жизни человека.

1. ТЕХНОЛОГИЧЕСКИЕ РЕВОЛЮЦИИ В ИСТОРИИ ЧЕЛОВЕЧЕСТВА

Сегодня ученые обращают особое внимание на значение технологических революций, происходивших в истории освоения человеком окружающего мира. Они выделяют прежде всего аграрную революцию, которая осуществилась около 10 тыс. лет назад, когда человек перестал быть кочевником, стал вести оседлый образ жизни и перешел от присваивающей формы ведения хозяйства к производящей, связанной с развитием земледелия и скотоводства.

Существенные изменения в технологии производства, которые связывают с началом промышленной революции, относятся к концу XVIII в. В развитии промышленных технологий современный американский социолог Д. Белл фиксирует три важнейших радикальных преобразования:

— первое из них связано с широким использованием силы пара, что было ознаменовано, прежде всего, изобретением Д. Уаттом в 1784 г. парового двигателя;

— второе было вызвано начавшимся в конце прошлого столетия применением в промышленности электричества и химии, изобретением таких важнейших средств связи, как телеграф, телефон, радио, осуществлением передачи электрической энергии на расстояние, созданием синтетических материалов;

— третье осуществляется нашими современниками благодаря изобретению компьютеров и телекоммуникаций.

Технологические революции позволили резко увеличить объем и преобразовать характер производства. Англия, которая первой освоила механическую прялку, ткацкий станок и паровой двигатель, быстро перешла от ремесленного производства к машинному. Это дало ей огромные преимущества перед другими странами. Уже в середине прошлого века она производила больше половины мировой промышленной продукции.

Вторая технологическая революция во многом содействовала тому, что в конце XIX — начале XX вв. развитие экономики в передовых капиталистических странах стало осуществляться небывалыми темпами.
ми. В 1880—1913 гг. ежегодный прирост производства в них составлял около 3%.

После Второй мировой войны и до начала 70-х годов экономика развитых стран продемонстрировала самые высокие темпы роста производства, которые превышали уже 5% в год. Именно в это время всем стало очевидно огромное значение науки и техники для общества. А начавшееся с конца 60-х годов все более широкое применение информационных и телекоммуникационных технологий обозначило новый этап в развитии всей цивилизации.

2. ТРИ ТИПА ОБЩЕСТВА

Д. Белл считает, что с точки зрения реализации обществом различных технологий производства в мировой истории можно выделить три главных типа социальной организации: доиндустриальный, индустриальный и постиндустриальный. Все они существуют и в настоящее время.

<table>
<thead>
<tr>
<th>Тип общества</th>
<th>Индустриальный</th>
</tr>
</thead>
<tbody>
<tr>
<td>Доиндустриальный</td>
<td></td>
</tr>
<tr>
<td>Определяющее начало жизни общества</td>
<td>Состязание человека с природой</td>
</tr>
<tr>
<td></td>
<td>Состязание человека с преобразованной природой</td>
</tr>
<tr>
<td></td>
<td>Взаимоотношения людей</td>
</tr>
</tbody>
</table>

Доиндустриальный тип господствует в Африке, Латинской Америке, Южной Азии. Для него характерно преобладающее значение земледелия, рыболовства, скотоводства, горнодобывающей и деревообрабатывающей промышленности. В этих областях хозяйственной деятельности занято около 2/3 работоспособного населения. Главным определяющим началом жизнедеятельности в таких обществах является состязание человека с природой.

Индустриальный тип общества охватывает государства, которые расположены в Северной Америке, Европе, на территории бывшего СССР и Японии. Здесь главное — развитие производства товаров массового потребления, которое осуществляется за счет широкого применения различ-
ного рода техники. Главным в таком производстве, по мнению Д. Белла, является состязание человека с преобразованной природой.

И, наконец, третий, постиндустриальный тип социальной организации только начинает в настоящее время реализовываться в развитых странах. Наибольших успехов в этой области достигли США и Япония. Здесь на первое место выходит производство услуг. Главным в этих странах становится труд, направленный на получение, обработку, хранение, преобразование и использование информации. В них начинает доминировать уже состязание между людьми.

Если в Африке, например, 2/3 активного населения в настоящее время занимается сельским хозяйством, то в США меньше 3%. В то же время промышленным производством в США заняты около 1/3, а в сфере услуг — 2/3 трудоспособного населения. Такие коренные различия обусловлены резко возросшей благодаря научно-техническому прогрессу эффективностью производства. Производительность труда промышленных стран в сельском хозяйстве сегодня более чем в 15 раз превышает аналогичный показатель в развивающихся странах.

Для постиндустриального общества характерно не только повсеместное использование достижений науки и техники во всех областях человеческой деятельности, но и целенаправленное усовершенствование самой техники на основе развития фундаментальных наук. Прошло, как пишет Д. Белл, время гениальных умельцев, которые могли без фундаментальных специальных знаний изобрести ткацкий станок, паровой двигатель, телефон, радио, самолет, автомобиль. Сегодня источником новаций в технике становится прежде всего достижения в фундаментальных науках. Без них невозможно было бы создать ни атомный реактор, ни лазер, ни компьютер.

3. КОРЕННЫЕ ИЗМЕНЕНИЯ В «ПЕРВОЙ ПРИРОДЕ»

Человека окружают

«ПЕРВАЯ ПРИРОДА»
(естественнная природа)

«ВТОРАЯ ПРИРОДА»
(результат человеческой деятельности)

В настоящее время практически вся пригодная для жилья территория суши освоена человеком. Необитаемыми остались лишь районы приполярья, высокогорья, пустынь Центральной и Юго-Западной Азии и Северной Африки, которые составляют около 15% суши. Сегодня на земном ша-
ре в среднем проживает около 40 человек на квадратном киломetre. Столь значительная плотность населения, вооруженного мощной современной техникой, оказывает существенное воздействие на ее облик и природные процессы.

Население нашей планеты с начала века выросло более чем в 3 раза. В 1900 г. в городах жило около 10% людей, а в 2000 г. ожидается, что городское население составит около 50%. Это означает, что оно возрастет с начала века в 20 раз! В 2000 г. около 22% населения нашей планеты будут жителями городов-миллионеров. Крупные города являются средоточием большого количества железных дорог, авиалиний. Их существование обеспечивается мощными транспортными потоками.

Представим себе функционирование таких гигантов, как Мехико, Сан-Паулу, Токио, население которых в 2000 г. будет превышать уже 20 млн. человек.

В самом большом современном городе Мехико будет проживать в 2000 г. свыше 25 млн. человек. В 2000 г. 82% населения развитых стран будут горожанами.

Огромное давление на природную среду, естественно, оказывают густонаселенные районы.

<table>
<thead>
<tr>
<th>Наименьшая плотность населения</th>
<th>(чел./кв. км)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Европа — Нидерланды</td>
<td>352</td>
</tr>
<tr>
<td>Азия — Бангладеш</td>
<td>657</td>
</tr>
</tbody>
</table>

Объем мирового промышленного производства в настоящее время в 20 раз выше, чем в начале XX в.

Около 6 млрд. человек содержат для своего жизнеобеспечения свыше 3 млрд. голов скота. Под пастбища используется около 23% всей суши, а около 12% ее засевается сельскохозяйственными культурами. Обработка пахотных земель ежегодно приводит к перемещению около 1 тыс. т. земли на каждого человека.

Мировой улов рыбы составляет около 70 млн. т. в год, что совсем близко к уровню естественной продуктивности водных бассейнов.

Около 600 млн. автомобилей, десятки тысяч морских судов, сотни тысяч самолетов, около 4000 искусственных спутников Земли позволяют людям легко преодолевать любые расстояния, но они же оказывают и большое воздействие на природу.
Каждый год на одного жителя планеты расходуется несколько тысяч кубических метров пресной воды и добывается в среднем несколько тысяч тонн сырья. За 15 лет потребляется столько природных ресурсов, сколько было использовано человечеством за все время его существования.

Хозяйственная деятельность людей увеличивает площадь пустынь и приводит к уменьшению площади лесов. В середине 50-х годов леса покрывали 1/4 поверхности суши, а сейчас лишь 1/5. В развивающихся странах в послевоенное время их площадь уменьшилась в 2 раза.

Промышленное и сельскохозяйственное производство приводит к изменению химического состава почв, воздуха, рек, озер и даже морей. Так, содержание нитратов в дождевой воде в Европе в настоящее время удвоилось по сравнению с 50-ми годами. Около 50% находящейся в атмосфере серы имеет антропогенное происхождение. Тысячи озер индустриального Севера биологически мертвы. Деятельность людей вызывает в атмосфере повышение концентрации углекислого газа, что проявляется в отмеченном учеными потеплении климата планеты. Фреоны, используемые в промышленности, разрушают озонный слой атмосферы, предохраняющий все живое на Земле от губительного ультрафиолетового излучения.

Таким образом, воздействие человека на природу становится настолько значительным и всесторонним, что оно превращается в важный фактор ее эволюции.

4. РАДИКАЛЬНЫЕ ПРЕОБРАЗОВАНИЯ ВО «ВТОРОЙ ПРИРОДЕ»

90% всех предметов, созданных человеком и окружающих сегодня нас, придуманы в ХХ в. Наука и техника радикально изменили весь наш образ жизни.

ЭНЕРГИЯ

На протяжении тысячелетий вплоть до конца XIX в. главными источниками энергии была сила человека и животного, а также сжигание древесин и органических отходов.

Так, в 1850 г. доля древесины в энергетическом потреблении США составляла около 90%. Однако уже в 1910 г. она упала до 10%. В 1950 г. каменный уголь давал еще 60% энергии в мире.
После второй мировой войны доминирующее значение в энергопотреблении стали приобретать нефть и газ.
В настоящее время на их долю приходится свыше 75 % мирового потребления энергии.
Современная техника дает человеку возможность широко и эффективно использовать энергию рек и водопадов, морских и океанических волн, ветра, геотермальную энергию, энергию солнечного излучения и даже энергию атома.

ТЕХНИКА И ТЕХНОЛОГИЯ
На наших глазах закончилась эра господства механической обработки металла. Сегодня для этой цели используется огромный арсенал физических, химических, биохимических процессов, в которых для воздействия на преобразуемый предмет применяются поля, излучения, плазма, отдельные молекулы, атомы, элементарные частицы, живые организмы.
Резко усложнившаяся технология процессов, повышение их скорости вплоть до скорости света — максимально возможной скорости в природе — приводит к тому, что для человека все более сложным и опасным становится непосредственное участие в производственном процессе. Отсюда естественно стремление к автоматизации и роботизации производства, невиданных в недавнем прошлом.
Так, в современном компьютере скорости обработки информации приближаются к скорости света.
Простейшая, используемая в электронике система, представляющая собой пластинку площадью в 1 кв. см (кремниевый монокристалл), заменяет сотни тысяч транзисторов и связующих их элементов.
Такая техника в принципе не может быть изготовлена без автоматизации процесса производства.
Промышленность, сельское хозяйство, сфера услуг сегодня в целом ряде стран основаны на технологиях, охватывающих пространство от микромира до космоса.
Электронные устройства широко вошли не только в различные производства, но и в наш быт.

Космическое телевидение, применение искусственных спутников Земли для прогноза погоды, определения состояния природных ресурсов и культурных посевов, для наблюдения за морскими животными и рыбами стали вполне привычными для нас.

Одной из важных особенностей современного производства является создание большого количества новых искусственных синтетических материалов, конструкционных материалов с заранее заданными свойствами, новых видов и разновидностей живых организмов.

Все это невозможно было даже представить себе какие-нибудь 100 лет назад.

ТРАНСПОРТ

Ракеты, самолеты, вертолеты, автомобили, электровозы, речные суда на подводных крыльях и воздушной подушке, современные морские суда и океанские лайнеры — какие невиданные возможности для преодоления пространства предоставляют они современному человеку!

СВЯЗЬ, ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

Как радикально изменились в XX в. средства связи! Поразительны изменения, произошедшие в наше время в области получения, хранения и передачи информации. Радио, телефон, телевизор, магнитофон, видеомагнитофон и, наконец, компьютер внесли наибольший вклад в создание современного целостного мира. Во всяком случае без них он был бы просто немыслим.

Новые информационные технологии, по мнению современных ученых, могут привести к кардинальным изменениям во всем нашем образе жизни, а их повсеместное применение ознаменует создание нового информационного общества.

5. ВЛИЯНИЕ РАЗВИТИЯ ТЕХНИКИ И ТЕХНОЛОГИЙ НА ЖИЗНЬ ЛЮДЕЙ

Все многообразие технических достижений, которые реализовывались в истории цивилизации, современный американский социолог О. Тоффлер представляет в виде трех технологических волн, которые ради-
кально повлияли не только на облик экономики, но и на культуру общества, его ценности

— Первая волна была связана с возникновением аграрного хозяйства. Аграрное общество использовало примитив- ные технологии, основанные на обыденном опыте, передававшемся из поколения в поколение. Доминирующим в них было применение ручного труда. Хозяйственная деятельность людей представляла собой земледелие, скотоводство, рыболовство, примитивное ремесло.

— Вторая волна — это комплекс технологий, обеспечивающих массовое, стандартное производство, характерное для индустриального мира, подобного огромной машине. Для него, по мнению О. Тойфлера, характерен централизм, гигантизм, единообразие в труде и жизни, массовая культура, низкий уровень духовных ценностей, угнетение людей, разрушение природы.

— Третья волна связана прежде всего с созданием информационного общества.

Распространение третьей волны меняет характер труда. Рутинный, повторяющийся монотонный, дегуманизированный труд уходит в прошлое. Такого рода работу лучше человека может сделать вооруженная компьютером современная техника:

— появляется возможность уйти от конвейера с его расчленением труда на отдельные примитивные операции. Сегодня один человек может произвести конечный продукт, причем не в стандартном, а в индивидуальном исполнении в соответствии с заказом потребителя;

— вместо жесткого режима работы появляется возможность иметь подвижный ее график;

— резко возрастает значимость малых предприятий;

— многие виды работы оказывается возможным делать дома.

«Драматизируя различия, мы должны сказать, — пишет О. Тойфлер, — что в старом, массовом промышленном производстве главными были мускулы. В развитых разукрупненных отраслях главными являются информация и творчество».

Экономика периода

(73)
второй волны требовала от человека третий волны творчества,
исполнительной точности, способности быстро
умения подчиняться власти, реагировать на изменения,
смирения с пожизненным инициативности,
однообразным трудом. коммуникабельности,
(74) разностороннего развития.

Для выполнения этих требований необходимо перестроить всю систему образования. Обучение, которое должно обеспечить совершенно новый образ жизни людей, будет, как считает О. Тоффлер, «одной из самых крупных отраслей третьей волны. Оно далее станет важной экспортной отраслью».

— Образование должно быть фундаментальным и вместе с тем разнообразным.
— Его необходимо максимально индивидуализировать.
— Нужно резко увеличить возможности обучения, самообразования, домашнего образования, активно вовлекая в этот процесс родителей.

Этого можно достичь, конечно, только на основе современных интенсивных технологий обучения с использованием видеооборудования и компьютера.

Новая экономика требует не только умения логично мыслить, легко оперировать абстракциями, но и быть свободным в мире образов и символов. Она приведет к повышению статуса широко образованных и культурных людей, которые будут постоянно воспроизводить и приумножать культурные ценности.

Как отмечает О. Тоффлер, «мы вступаем в период, когда культура имеет значение большее, чем когда-либо. Культура не является чем-то окаменевшим в янтаре, это то, что мы создаем заново каждый день».

Новое общество, опираясь на высокопроизводительный труд, сможет наконец сфокусировать свое внимание на проблемах воспитания детей, здоровья людей, их образования. Старость и одиночество станут предме-
том особой его заботы. Это будет, по мнению О. Тоффлера, общество подлинной свободы личности, в котором человек станет гармонично взаимодействовать с природой.

Сопоставим теперь различные типы обществ, исходя из их классификации, данной Д. Беллом.

Сравнительная характеристика разных типов обществ (начало 90-х годов XX столетия)

<table>
<thead>
<tr>
<th>Тип общества</th>
<th>Индустриальный</th>
<th>Постиндустриальный</th>
</tr>
</thead>
<tbody>
<tr>
<td>Доиндустриальный</td>
<td>Страны, в наибольшей степени приближавшиеся к этому типу общества:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Характерные представители</th>
<th>Афганистан</th>
<th>Италия</th>
<th>США</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ангола</td>
<td>Франция</td>
<td>Япония</td>
<td></td>
</tr>
<tr>
<td>Эфиопия</td>
<td>Великобритания</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Никарагуа</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Валовый национальный продукт на душу населения (в долл.) | до 400 | около 10 000 | около 18 000 |

<table>
<thead>
<tr>
<th>Основной фактор производства</th>
<th>Земля</th>
<th>Капитал</th>
<th>Знания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Основной продукт производства</td>
<td>Пища</td>
<td>Промышленные изделия</td>
<td>Услуги</td>
</tr>
<tr>
<td>Характерные черты производства</td>
<td>Ручной труд</td>
<td>Широкое применение механизмов, технологий</td>
<td>Автоматизация производства, компьютеризация общества</td>
</tr>
<tr>
<td>Характер труда</td>
<td>Индивидуальный труд</td>
<td>Преимущественно стандартная деятельность</td>
<td>Резкое повышение творческого начала в труде</td>
</tr>
<tr>
<td>Занятость населения</td>
<td>Сельское хозяйство — около 75%</td>
<td>Сельское хозяйство — около 10%</td>
<td>Сельское хозяйство — до 3%, промышленность — около 33%, услуги — около 66%</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Урожайность зерновых (в ц/га)</td>
<td>около 8</td>
<td>около 40</td>
<td>около 40</td>
</tr>
<tr>
<td>Надой молока на 1 корову в литрах в год</td>
<td>около 350</td>
<td>4000-6000</td>
<td>4000-6000</td>
</tr>
<tr>
<td>Основной вид экспорта</td>
<td>Сырье</td>
<td>Продукты производства</td>
<td>Услуги</td>
</tr>
<tr>
<td>Политика в области образования</td>
<td>Борьба с неграмотностью</td>
<td>Подготовка специалистов</td>
<td>Непрерывное образование</td>
</tr>
<tr>
<td>Количество учёных и инженеров на 1 млн. жителей</td>
<td>около 100</td>
<td>около 2000</td>
<td>около 2000</td>
</tr>
<tr>
<td>Смертность на 1000 чел.</td>
<td>около 20 человек</td>
<td>около 10 человек</td>
<td>около 10 человек</td>
</tr>
<tr>
<td>Продолжительность жизни</td>
<td>40—50 лет</td>
<td>свыше 70 лет</td>
<td>свыше 70 лет</td>
</tr>
<tr>
<td>Воздействие человека на природу</td>
<td>Локальное, не-контролируемое</td>
<td>Глобальное, не-контролируемое</td>
<td>Глобальное, контролируемое</td>
</tr>
<tr>
<td>Взаимодействие с другими странами</td>
<td>Несущественное</td>
<td>Тесная взаимосвязь</td>
<td>Открытость общества</td>
</tr>
</tbody>
</table>

(76)

V. ВЛИЯНИЕ НАУКИ НА РЕЛИГИОЗНОЕ ВОСПРИЯТИЕ МИРА

Огромное влияние науки на духовную жизнь общества несомненно. В контексте нашей проблематики нет возможности рассматривать его во всем весьма противоречивом многообразии. Но чтобы оценить масштабы
этого воздействия, рассмотрим характерный, а, может быть, и самый показательный аспект этого процесса — влияние науки на религию, на религиозное мировоззрение. Наиболее существенное воздействие наука сегодня оказывает на христианство. Что же говорят по этому поводу сами христианские теологи?

1. ОТНОШЕНИЕ К РЕЛИГИИ В ВЕК НТП

СОЦИАЛЬНЫЙ СТАТУС НАУКИ

Современные христианские богословы обращают внимание на то, что наука играет огромную роль в жизни общества и в целом высоко оценивают ее значение для социального и культурного развития человечества. Что же касается XX в., то, по их мнению, наш мир можно по праву называть миром современной науки, поскольку именно она оказывает сегодня наиболее сильное и значимое воздействие на проходящие в нем процессы.

Православный богослов иеромонах Ианнуарий, например, называет развитие науки и техники «основными положительными характеристиками современной цивилизации» и высоко оценивает стремление человека к рациональному познанию реальности. При этом он отмечает, что «культура современного мира все более становится европейской культурой, ориентированной на действительность, ее познание и овладение ею».

Другой богослов — заведующий отделом службы консультации при аббатском генеральном викариате г.Трира, немецкий католический теолог Г.Байор — указывает на то, что «не только взрывоподобное расширение промышленного и сельскохозяйственного производства типично для нашей культуры. Также важно, что основой промышленного и сельскохозяйственного производства является духовное «научное производство». Особенно он подчеркивает, что «научное производство» полезно не только в плане создания материальных ценностей и улучшения благосостояния людей, но и в мировоззренческом отношении, ибо с его помощью люди формируют свои представления о действительности, строят картину мира.

Итак, наука рассматривается в современном христианстве как одно из величайших достижений человечества.

Конечно, научные исследования «трансформируют мир и открывают возможности для лучшей жизни», а в «донаучных культурах жизнь была короткой и суровой». С этими утверждениями экс-генерального секретаря Всемирного Совета Церквей, протестантского теолога Ф. Поттера и из-
вестного американского теолога, профессора теоретической физики и специалиста по проблеме взаимоотношений религии и науки Я. Барбура сегодня, наверное, согласятся все.

Вместе с тем, оценивая гуманистический статус науки, христианские богословы отмечают, что научные исследования сегодня нередко утрачивают «этический горизонт». К таким исследованиям относится, прежде всего, развитие науки в военных целях. Кроме того, как замечают теологи, человек сейчас слишком уж много возомнил о себе и противопоставил себя всей остальной природе.

Вообразив себя властелином природы, он преобразует ее, ставит над ней эксперименты, нередко не задумываясь или не представляя себе явно разрушительных последствий такой деятельности.

Все это, естественно, не может не вызывать серьезного беспокойства. Как отмечает православный богослов, профессор Санкт-Петербургской духовной академии Н.А.Заболотский, «величайшие открытия науки до сего времени часто использовались во зло человеческому роду и во вред природе».

Кроме того, подчеркивается, что для научных исследований в настоящее время требуются большие сообщества ученых, огромное количество дорогое оборудования, и все это может быть предоставлено науке только в развитых промышленных странах.

Поэтому, как отмечает, например Ф. Потгер, более 90% ученых работает сегодня именно в таких странах, причем «более 90% их деятельности сконцентрировано на исследованиях для богатого мира».

Только 4% всех научных работ ведется сегодня в развивающихся странах.

Однако, справедливо подчеркивает Я.Барбур, «без технологии развивающиеся нации мира останутся в голоде и нищете».

Такого рода, рассуждения лежат в основе заключений многих христианских богословов о том, что современная наука:

способствует развитию только приносит больше власти тем, кто ее уже имеет, обогащает и без того богатых и практически не помогает беднейшей части населения.

Многие богословы полагают, что именно отдаляясь от религии, наука становится бездуховной, а ее применение теряет нравственные, гу-
маистические ориентиры. А это и приводит в итоге к негативным социальным последствиям применения достижений науки, преврашая ее из служителя человеку в силу, направленную против него.

И здесь, с точки зрения теологов, церковь должна рассматриваться как «моральный посредник, способный помочь обществу в ответственном занятии наукой...».

Одним из важнейших каналов оказания такой помощи является использование религиозного наследия, которое должно пронизывать как нашу личную, так и общественную жизнь.

«Будущее человечества на вращающейся планете, этом космическом корабле — Земле — зависит от нашей способности объединить разум с опытом, науку — со смирением, и технологию — с человеческими ценностями», — заключает Я.Барбур.

ИЗМЕНЕНИЕ ОТНОШЕНИЯ К РЕЛИГИИ

Богословы отмечают, что наука всегда оказывала существенное влияние на мировоззрение людей, затрагивая при этом и их представления о Боге и о его отношении к миру.

Так, еще в XVII в. Р.Декарт разрабатывал концепцию дуализма материи и разума, в которой «область компетенции» Бога существенно ограничивалась.

Мыслители эпохи Просвещения XVIII в., заменив Бога механикой, соглашались оставить за религией в лучшем случае функцию поддержки морали.

В XIX в. пietет перед наукой достиг апогея. Физика казалась полностью построенной и обладающей безграничными возможностями для познания мира. Дарвинизм дал научное объяснение эволюции организмов и происхождению человека.

И, хотя сами по себе научные достижения не отрицали достоверность Бога, именно такая точка зрения стала укрепляться в умах образованных людей.

Вслед за Лапласом, считавшим, что его теория внутренней стабильности Солнечной системы устранила необходимость веры в божественного корректора (которой придерживался, в частности, И.Ньютон), многие люди пришли к убеждению, что и они не испытывают нужды в «гипотезе Бога».
Сегодня распространению такого убеждения во многом способствует развитие специфического стиля мышления, порожденного особенностями XX столетия, и прежде всего, научно-техническим прогрессом.

Наука сейчас буквально пронизывает всю нашу жизнь.

Это и общедоступные средства массовой информации, и предсказания погоды с помощью спутников, и кислотные дожди, и многое-многое другое.

Кроме того, научное познание проникает в глубинные тайны мироздания, психики человека и его поведения, давая, в частности, естественное объяснение возникновения и развития Вселенной, самых сокровенных человеческих чувств и мыслей, разнообразных социальных процессов.

Всё это способствует тому, что мировые события больше не рассматриваются многими людьми как акты Бога.

Скорее наоборот, во всем чувствуется «рука» человека, а не Бога.

Отсюда, замечает американский теолог Ч. Гендерсон, многие сегодня делают вывод, что «наши жизни создаются силами, которые полностью описываются в рамках науки». А распространение такого убеждения, в свою очередь, имеет следствием то, что, по свидетельству известного немецкого протестантского теолога В. Панненберга, и «религиозная интерпретация реальности больше не принимается как универсально надежная, а рассматривается как предмет частного отношения, если вообще не как суеверие».

В итоге прогресс человечества стал связываться только с наукой, а религию многие предпочитают трактовать как ее антитезу.

Такая ситуация, а также объективная потребность теологии в ассимилиации научных достижений с целью развития религиозного мировоззрения и собственно теологии поставили христианство перед необходимостью

— быть более тесно связанной с современной жизнью и, особенно, с одним из важнейших ее феноменов — наукой;

— расширить и углубить свои представления о мире и его Творце.

Сегодня вопрос ставится даже так:

«Если церковь должна говорить с современным миром и ответственно взаимодействовать с ним, она должна взаимодействовать с современной наукой».
Для этого многие богословы считают необходимым направить свои усилия на установление как можно более тесного контакта религии и науки, на развитие конструктивного диалога между теологами и учеными.

Решению данной задачи богословы уделяют сегодня огромное внимание.

Причем важно отметить, что в обсуждениях этой проблемы принимают участие представители самых разных направлений христианской теологии — от крайнего фундаментализма до ультрамодернизма. Ибо все они считают невозможным игнорировать научную информацию, оказывающую влияние на наши представления о мире, и в той или иной степени сознают необходимость взаимодействия религии и науки.

2. ПОТРЕБНОСТЬ В ДИАЛОГЕ

Высоко оценивая позитивное значение науки для развития человечества, богословы сегодня обращают внимание на то, что христианство должно с уважением относиться к рациональной познавательной научной деятельности.

Они подчеркивают, что христианская вера — это вера, ищущая знания и понимания.

И как таковая она не может находиться в стороне от развития науки. Научные исследования и достижения не только влияют на религию, они являются чрезвычайно полезными для эволюции религиозного мировоззрения, для развития теологии в целом. Поэтому христианские богословы в настоящее время ставят перед собой задачу координации своей деятельности с достижениями самых разных научных дисциплин.

Ведь познавая сотворенный Богом мир, человек углубляет и свои представления о Боге. Научное познание способствует устранению неверных представлений о Творце и, по словам автора многих работ по проблематике взаимоотношения религии и науки, известного английского протестантского теолога и ученого А.Пикока, научное познание «делает возможным обогащение нашего понимания отношения Бога к миру и человеку».

В работах целого ряда христианских мыслителей подчеркивается даже необходимость построения системы преподава-
ния и изучения религии на научной основе. Это, как им представляется, поможет укрепить авторитет христианской веры, а также будет способствовать развитию собственно теологии.

Более того, в христианстве сегодня активно развивается возникшее еще в начале века направление теологической методологии религии и науки, которое к настоящему времени стало весьма значительным и репрезентативным.

В рамках этого направления теологами проводится сравнительный анализ религии и науки, в ходе которого выявляются их специфические и сходные характеристики, обсуждаются особенности их предмета, методов, языка, целей и задач, объективности предоставляемой ими информации, институциональной организации, развития этих феноменов культуры.

Как считают некоторые богословы, сегодня вообще крайне затруднительно провести четкую границу между научным и религиозным способами постижения мира.

И, быть может, именно это обстоятельство обусловливает то влияние, которое наука оказывает на религию, а также возможность их естественного, а не насильственного взаимодействия друг с другом.

3. ТРУДНОСТИ ВО ВЗАИМООТНОШЕНИЯХ

Сегодня богословами ведется огромная работа по осмыслению взаимоотношений христианства и науки, как в прошлом, так и в настоящем, и разрабатываются новые подходы к развитию диалога между ними.

Весь период истории, последовавший за эпохой античности, для христианства и науки «был отмечен не гармоническим сосуществованием, а конфликтом», констатирует известный польский специалист по философии религии М. Хеллер.

Теологи предлагают различные интерпретации причин и сущности конфликтов христианства и науки в истории, но большинство из них соглашается с тем, что в отношениях религии и науки нужна модернизация, которая сделала бы развитие обеих этих важнейших областей человеческой культуры более эффективным.

ИЗМЕНЕНИЕ ОТНОШЕНИЙ ХРИСТИАНСТВА И НАУКИ

Если в средние века слово богословов в научном споре зачастую было решающим, а в последующий период авторитет теологов и ученых был более или менее одинаковым, то сегодня «столы перевернулись». Как за-
мечает виндзорский священник Д.Стэнсбай, в наше время уже теология вынуждена признать бесспорным авторитет и господство науки. Теперь уже богословы пытаются приспособить свою деятельность к традиции западной научной мысли.

Оценивая современное состояние дебатов между религией и наукой, американский протестантский теолог Л. Гилки обращает внимание на любопытный факт. Если раньше, например, религиозные антиэволюционистские движения были антинаучными, и сторонники их выступали против науки, отстаивая библейское христианство, то сейчас ситуация во многом изменилась.

Сегодня приверженцы антиэволюционизма заявляют, что они защищают не столько религию, сколько науку.

Они говорят о том, что эволюционизм — «плохая наука» и защищают свои взгляды на происхождение и развитие универсума как «хорошую науку», подчеркивая при этом, что дело здесь вовсе не в религиозных мотивах, а в стремлении дать адекватную картину мира.

В таком стиле рассуждают, в частности, приверженцы «научного креационизма» — направления религиозной мысли, в рамках которого реализуются попытки доказать при помощи научных аргументов, что библейские рассказы о сотворении мира дают адекватную научную картину его возникновения и развития. С этой точки зрения «научный креационизм» рассматривается его сторонниками как попытка создать новый тип союза религии и науки, вызывающий при этом крайне негативную реакцию, как со стороны ученых, так и со стороны теологов, несогласных с постулатами «научного креационизма».

Вместе с тем, замечает английский богослов и ученый А.Хайярд, существует и другая крайность, связанная с некритичным восприятием научных теорий и слишком поспешным стремлением ввести их в религиозное мировоззрение.

Так, сторонники сочетания теории эволюции и библейского вероучения «модифицировали Дарвина столь же бесцеремонно, сколь они пересекли библейских авторов. Их версию теории эволюции можно было бы назвать «христианский дарвинистицизм». Но это слишком хорошо для них. Если необходимо добавить суффикс «истицизм» к имени Дарвина, чтобы показать, что его учение извращено, то нелогично останавливаться на этом. Чтобы быть последовательными, нужно этот пикантный коктейль
либеральной науки и либеральной теологии, очевидно, назвать «христиан

истичный дарвинизмм».

Все это, считает Л.Гилки, происходит потому, что особая, научная
эпоха порождает и особый, специфический религиозный период.

В научный век каждая форма культуры, в том числе и религия, стремится стать научной.

А это не может не вызывать конфликтных ситуаций.

ВЛИЯНИЕ ПОЗИТИВИЗМА

Богословы обращают внимание еще на один аспект непосредствен
ного влияния специфического научного стиля мышления на развитие тео
логии. Так, по мнению Д.Стэнсбая, возникновение модернизма и либе
ральной протестантской теологии в конце XIX — начале XX вв. было в не
малой степени результатом антиметафизического интеллектуального
климата, созданного позитивизмом в науке и философии».

В последующие десятилетия под влиянием характерного для века
научно-технического прогресса позитивистского стиля мышления христиа
нскими богословами стали активно разрабатываться идеи о необходимо
сти согласовать особенности теологического познания с требованиями по
зитивизма.

Здесь речь идет, в частности, об использовании в теологии тех же ме
тодов и принципов, какие применяются в научном исследовании (напри
мер, постулатов эмпиризма, верификации и фальсификации как основных
условий осмысленного, имеющего значение познания); о том, что теологи
ческие утверждения должны соответствовать требованиям, предъявляе
мым к утверждениям

(86)

научным; о необходимости ограничения сферы деятельности теологии
лишь антропологической или даже только этической проблематикой; о разви
тии идей секулярного христианства.

Одним из важнейших результатов широкого распространения пози
тивистского стиля мышления, как считают некоторые современные теоло
ги, стало то, что догматы христианства потеряли значительную часть свое
го авторитета.

Оценивая современное состояние взаимоотношений христианства и
науки, богословы сегодня приходят к выводу, что теология пока не удается
адекватно реагировать на прогресс науки, на ее воздействие на саму рели
gию.

kupcov_v_i_i_dr_filosofiya_i_metodologiya_nauki
И проблема выработки путей взаимодействия религии и науки продолжает оставаться в центре теологических дискуссий.

4. РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О МИРЕ И ИЗМЕНЕНИЕ «МОДЕЛЕЙ» БОГА

В христианстве всегда считалось, что, хотя сотворенный мир не тождествен Богу, тем не менее, он несет на себе отпечаток некоторых существенных черт Творца. А коль скоро творение есть в известном смысле отображение Творца, то, исследуя сущность сотворенного мира, можно обнаружить и некоторые характерные особенности его Создателя.

Таким образом, изменения в ходе развития науки представлений о мире с необходимостью влекут за собой модификации «моделей» его Творца.

МОНАРХИЧЕСКАЯ «МОДЕЛЬ» БОГА

Как, замечает Я. Барбур, в средние века господствовало представление о наличии в мире статичного порядка:

— фундаментальные, базисные формы, лежащие в основе всего существующего, считались строго фиксированными и неизменными;

— с этим, в свою очередь, согласовывалось субстантивное рассмотрение всего сущего, составные части которого трактовались как раздельные, автономные, независящие друг от друга материальные субстанции;

— иерархическая субординация считалась такой, в которой низшая форма должна служить высшей;

— мировоззрение было религиозно-телеологическим, согласно которому утверждалось, что бытие всякой «твари» выражает ее собственные цели и глобальную, божественную цель.

Модель Бога здесь «МОНАРХИЧЕСКАЯ», ибо Бог рассматривается как единоличный, всемогущий правитель, господствующий над вселенной.

ДЕИСТИЧЕСКАЯ «МОДЕЛЬ» БОГА

На смену средневековому пришло мировоззрение нового времени, часто называемое ньютоновским, которое по всем своим существенным параметрам отличалось от предыдущего.

— Оно допускало изменения, правда, только как перекомбинацию неизменных компонентов.
— Фундаментальными реальностями считались не субстанции, а частицы. Мир, таким образом, трактовался не как субстантивный, а как атомистический.

— При объяснении взаимоотношений разноуровневых форм организации материи использовался не иерархический, а редукционистский принцип, ибо предполагалось, что мировые события детерминируются механизмами низшего уровня.

— Наука нового времени отказалась от формальной и финальной причин. Мир, с позиций мировоззрения Нового Времени, трактовался не как телеологический, а как детерминистический. Все мировые события объявлялись детерминированными не целями, а механическими причинами.

Этот новый, полностью описываемый в рамках механики и потому сам «механоморфный» мир представлялся точными часами, где все детерминировано причинными связями.

В новое время чрезвычайно популярным было мнение о том, что природа — это библия Бога, а структура мироздания демонстрирует божественную механику и математику.

Ньютоновскому мировоззрению соответствовала и новая «модель» Бога — ДЕИСТИЧЕСКАЯ, в которой Бог уподоблялся часовщику, налаживающему и пускающему в действие хорошо подогнанный часовой (природный) механизм.

Однако наука интенсивно развивалась. «Много нового вина было влито в старые мехи» и, наконец, произошло то, что должно было произойти — теоретические и экспериментальные достижения науки «взорвали» ньютоновскую парадигму.

Низвержение механистической картины мира началось на рубеже XIX — XX вв.

5. СОВРЕМЕННЫЕ ТЕОЛОГИЧЕСКИЕ КОНЦЕПЦИИ РАЗВИТИЯ МИРА И РОЛИ БОГА В НЕМ

Проникновение науки в тайны Вселенной — ее возникновения и развития — поставили теологов перед необходимостью обратить особое внимание на историю мироздания, содержащуюся в Библии. В этой связи, наряду с фундаменталистскими взглядами на возникновение и развитие мира, на характер его Создателя, в христианстве стали активно развиваться
и новые представления о сущности Творца и творения, в которых реализовывались стремления теологов ассимилировать достижения науки.

ФУНДАМЕНТАЛИЗМ
Важно отметить, что сегодня даже те богословы, которые считают необходимым буквальное, не аллегорическое прочтение библейских рассказов о творении или отстаивают библейскую картину мира как наиболее аутентичную, обосновывая свои утверждения, ссылаются на данные науки.

Прежде всего это относится к сторонникам позиции креационизма и научного креационизма. Ее основные постулаты:
— виды органической природы были сотворены раз и навсегда непосредственно Богом и дошли до нас в первозданной форме;
— никаких генетических связей между видами нет;
— творение было завершено несколько тысячелетий назад и сейчас не происходит.

Они утверждают, что наш универсум во всем его многообразии был запланирован заранее всемогущим и всезнающим Богом.

Замечательно то, что отстаивая эти взгляды, богословы активно апеллируют к научным аргументам. Здесь используется антропный принцип, второе начало термодинамики, даются оценки времени жизни звезд и галактик, проводится подсчет вероятности случайного возникновения жизни, делаются ссылки на термодинамику неравновесных процессов, на оценки степени вредности для организмов мутаций.

НОВОЕ ОТНОШЕНИЕ К БИБЛЕЙСКОЙ ДОКТРИНЕ ТВОРЕНИЯ
Вместе с тем, развитие научного познания и человеческой культуры в целом привело к тому, что в современной христианской теологии широко распространенным стало убеждение в том, что библейские повествования о творении мира не отражают реальный ход событий.

Так, по мнению американского богослова Ч.Барретта, только «людей прошлого, которые жили в донаучные времена и в ненаучных культурах, видимо, можно извинить за прочтение историй творения в «Бытии» как буквального объяснения физических начал мира».

Библейские рассказы о творении можно рассматривать только как свидетельство определенного этапа развития человеческого опыта, знания о мире, стиля мышления и речи людей того времени.
Данное в Библию объяснение происхождения мира ни по своим методам, ни по полученным результатам (т.е. по предоставляемой информации) не может и не должно претендовать на научность. Как отмечает немецкий протестантский теолог У. Гербер, важнейшей задачей того или тех, кто писал «Бытие» была вовсе не информация о возникновении и развитии мира, а восхваление Бога как всемогущего Творца. И здесь «творение вызывает интерес не как естественнонаучное событие, а как этап святой деятельности Бога».

Что же касается буквального прочтения библейских рассказов о творении, то отношение многих богословов к этой позиции можно охарактеризовать словами известного специалиста в области проблематики взаимодействия науки и христианской религии, руководителя исследовательского общества М. Планка в Шлипц-Хессене и преподавателя философско-теологической высшей школы г. Фулдса И. Иллиеса. Ссылаясь на то, что еще Августин говорил о смехотворности буквальной трактовки шести дней творения, И. Иллиес утверждает, что тот, «кто сегодня еще придерживается идеи постоянства видов и шестидневного творения... в своем усердии может даже принести вред христианству».

ТЕИСТИЧЕСКИЙ ЭВОЛЮЦИОНИЗМ

Утверждение научных принципов глобального эволюционизма во взглядах на возникновение и развитие Вселенной и многообразных форм организации материи, развитие космологии, физики, биологии и других наук, открытие радиоуглеродного метода определения возраста горных пород и ископаемых останков дали возможность существенно развить наши представления о мире.

Разрабатываемую сегодня на научной основе картину мира многие теологи расценивают как весьма адекватную и считают возможным синтезировать ее основные положения с религиозным видением мира.

Одной из характерных реализаций такого синтеза является развитие в христианской теологии направления теистического эволюционизма. Коротко позицию его сторонников можно обозначить следующим образом:

— они соглашаются с тем, что универсум имеет историю, насчитывавшую миллиарды лет, что жизнь на Земле появилась около 3 миллиардов лет назад;
— они признают основные характеристики и закономерности эволюционного процесса (например, значение мутационной изменчивости, важную роль естественного отбора, формирование сложных организмов на основе более простых и т.п.);

— здесь допускается идея о естественной эволюции человека от животных предков в телесном отношении, хотя отстаивается утверждение о сверхъестественном характере его духовной эволюции;

— но в рамках этой позиции категорически отрицается возможность допущения фундаментальной роли случайности в развитии универсума и считается, что опосредованно, через вторичные причины, этот процесс однозначно детерминирует и направляет Бог.

Весь универсум развивается закономерно, согласно воле Бога и в направлении заданной Богом цели.

6. ВЕРОЯТНОСТНЫЙ МИР И НОВЫЕ «МОДЕЛИ» БОГА

Как мы видим, и сегодня многие богословы пытаются строить некую (используя предложенную терминологию) монархо-деистическую модель Бога. В рамках такой модели Бог рассматривается как трансцендентный по отношению к миру Абсолют, всемогущий, заранее однозначно детерминирующий ход развития универсума.

Для Бога, а соответственно и для сотворенного им мира нет ничего непредвиденного, неопределенного. А события, которые люди называют случайными, являются таковыми не объективно, а субъективно, в силу несовершенства человеческих познавательных способностей, не дающих людям возможности выявить подлинные причины подобных феноменов.

Конечно, возникновение и развитие такого направления как теистический эволюционизм обусловлено грандиозным прогрессом научного познания. Однако наука оказалась здесь влияние прежде всего на модификацию религиозной картины мира. Представления же о Боге как «подталкивающем» в определенные периоды, направляющем процесс развития мира остались, по сути, на уровне нового времени.

Однако, подчеркивают многие современные христианские богословы, нельзя все же забывать о том, что наука XX в. значительно отошла от ньютоновской концепции природы и (под влиянием, в первую очередь, эволюционной модели с ее «слепой» случайностью и квантовой механики с ее принципом неопределенности) разрушила механистическое мировоз-

(92)
зрение в целом и приступила к формированию нового видения мира. Основные его характеристики таковы:

— универсум возник в результате Большого взрыва и его возраст составляет около 20 млрд. лет;

— природа вся исторична и даже базисные, фундаментальные ее формы радикально изменяются. Именно так, эволюционно, возникали последовательные уровни организации — физическая материя, жизнь, психика, культура;

— мир способен к самоорганизации, самоупорядочиванию, которые реализуются благодаря тому, что сама природа оказывается в состоянии отобрать наилучшие варианты из спектра осуществляющихся возможностей;

— человеческое бытие не является необходимым, оно случайно в смысле его неприсутствия во всех возможных актуальных мирах. «Возникновение человеческого сознания с его свойствами свободы и восприятия возможно только в космосе, характеризующемся определенными ограничениями, лимитами, давлениями. Космический порядок является необходимым пререквизитом сознательного, персонального, человеческого существования»;

— природа теперь рассматривается как целостная и взаимосвязанная. Основу же реальности составляют не субстанции или частицы, а отношения;

— редукция, как и прежде, признается плодотворной, но не как универсальный природный принцип, а только как метод анализа отдельных компонентов систем. А главное внимание теперь уделяется целому — самим системам;

— вместо строгого механистического детерминизма теперь предлагается сложная комбинация закона и случая.

С появлением теории о квантово-волновой природе света стало ясно, что поведение электрона подчиняется не однозначным, а вероятностным законам, и его местоположение в атome можно определить только вероятностно. При анализе поведения частиц на всех атомных уровнях мы вынуждены пользоваться принципом неопределенности. С такой же неустранимой неопределенностью ученые столкнулись и при попытках точного определения энергии и времени.
Вместе с тем, вероятностные процессы, проходящие на более низких уровнях вполне совместимы с детерминированными процессами, характерными для более высоких уровней организации материи.

«МОДЕЛЬ» БОГА В ТЕОЛОГИИ ПРОЦЕССА

Эта современная научная картина мира порождает новый образ Бога.

За всем развертыванием мирового процесса стоит Бог, присутствующий во всем, но не участвующий в каждом событии в качестве его причины, действующий посредством сложной комбинации закона и случая, экспериментирующий с миром и не знающий конечного результата своих экспериментов.

Здесь случай не является ни пугающим, ни привлекательным. Он просто представляет собой то, что требуется для реализации возможностей универсума. Если мир обязан своим существованием Богу-Творцу, то нет оснований сомневаться в том, что Бог мог «позволить развиваться потенциальностям своего универсума во всем его многообразии через действие случайных событий». То, что так смутило А.Эйнштейна, — играющий в кости Бог — теперь оказывается как раз соответствующим действительности. «Здесь, — утверждает А.Пикок, — случай — это поисковый радар Бога, простирающийся через все возможные мишени, доступные его исследованию».

Рассуждая подобным образом, ряд христианских богословов приходит к выводу, что современной картине мира, в которой природа изображается как развивающаяся посредством взаимодействия случая и закона, как непрерывно эволюционирующая, как представляющая собой «взаимосвязанную сеть бытия», соответствует новая «модель» Бога и его отношения к миру.

Эта модель ни монархическая, ни деистическая.

Это модель ПРОЦЕССА.

Здесь Бог — ни всемогущ, ни беспомощен. Он не детерминирует и не контролирует мир, а участвует в нем на всех уровнях, улучшая согласованность его составных частей и поддерживая его существование.

«Бог не действует непосредственно, и ничто происходящее не является исключительно актом Бога... Бог не вмешивается спорадически со стороны, а скорее присутствует в развертывании каждого события».

Бог учится и растет вместе со своим творением.
Таким образом, становление и развитие мира есть одновременно становление и развитие Бога.

Итак, по мнению А. Пикока, известного протестантского теолога Ч. Хартсхорна, Я. Барбура и ряда других богословов, творение мира еще не закончено, оно продолжается, и Бог по отношению к нему — имmanentен и трансцендентен. Творец, конечно, больше чем мир. Но именно в Боге мир существует. И именно Бог через многообразные уровни творения открывает свое значение для человека.

БОГ В МИРЕ ОТНОСИТЕЛЬНОСТИ И ВЕРОЯТНОСТИ

Один из крупнейших специалистов в области проблематики «религия и наука», американский теолог Х. Ролстон, рассматривает другой аспект влияния науки на представления о Боге. Сегодня, согласно теории относительности и квантовой механике:

— пространство и время больше не рассматриваются как пассивные, а видятся генераторами и носителями всей «Игры частиц» и даже творцами друг друга;

— больше нет абсолютных пространства и времени; нет и абсолютного «сейчас»; нет всеобщих больших часов, а есть только локальные часы;

— микромир убедительно демонстрирует свою индетерминированность — подчинение не однозначным, а вероятностным законам;

— все оказывается связанным между собой — пространство и время, время и движение, энергия и масса.

В этой связи, опасается Х. Ролстон, может возникнуть впечатление, что под ударами относительности и квантовой индетерминантности разрушится представление о религиозном Абсолюте.

На самом же деле, такая относительность вовсе не означает отрицания абсолютности Бога. Это означает только, что Бог познается в отношении, так же, как и любое явление природы. Мы имеем к объектам нашего исследования лишь относительный доступ и переводим их на привычный, понятный нам язык. Таким образом, считает Х. Ролстон, «то, что мы делаем так в физике, не препятствует, а скорее даже должно способствовать убеждению, что мы можем так же поступать и в религии».

Бог дает миру бесконечный и случайный потенциал для его развития. Именно случайный, ибо, создавая мир, Бог не только играет в кости, но и...
сыплет эти кости «снизу» (будучи фундаментальной основой всего сущего), что обуславливает свободное развитие сотворенных им организмов.

Таким образом, творение, оставаясь зависимым от Бога, обретает и относительную независимость. Поэтому Бога не следует рассматривать просто как дающего базис всему сотворенному миру. На физическом уровне «Бог не является ни архитектором, ни часовщиком; он — Плазма и Процесс».

ЧЕЛОВЕК - НЕ «ВЕНЕЦ ТВОРЕНИЯ»

В контексте современной научной картины мира теологами делаются новые акценты в их трактовке места человека в мире.

Творение мира — непрерывный процесс, характеризующийся множеством непредвиденных новшеств.

Одним из «непредвиденных новшеств» является и возникновение человека.

Этот процесс, считает А.Пикок, представляет собой «только одну, хотя, несомненно, золотую нить, которая вытягивается из запутанного клубка эволюционной истории». Внутримировое творение, таким образом, не направлено исключительно на человека. Это вовсе не уменьшает значения и достоинства человека. Но осознание данного факта поможет нам оценить мир «без всякого следа антропоцентризма».

С идеями центризма, замечает Х.Ролстон, нужно вообще быть очень осторожными, ибо они регулярно терпят поражение.

— Коперник опроверг представления о привилегированном положении Земли.

— Дарвин представил появление человека как результат слепого естественного отбора.

— Эйнштейн поставил определение нашего местонахождения в пространстве и времени в зависимость от положения наблюдателя.

Конечно, мы, анализируя вопрос о происхождении универсума, не можем не учитывать «человеческий фактор», но все же можно было бы «только пожалеть, если бы вся эта величественная Вселенная оказалась нужной только для нашего появления или даже для разбрасывания очагов разума повсюду во Вселенной».
Таким образом, представление об универсуме как обусловленном изначальной божественной целью — создать человека — встречает серьезные возражения у многих теологов.

Более того, некоторые богословы вообще трактуют возникновение нашего универсума как результат простой случайности и считают возможным принять точку зрения о существовании многих миров, низвергая тем самым не только идею антропоцентризма, но и утверждения об особом статусе именно нашей Вселенной.

7. ВОЗМОЖНОСТИ ИНТЕГРАЦИИ

У современных христианских богословов не вызывает сомнения то, что на формирование религиозного мировоззрения наука оказывает значительное влияние. Один теологи склонны это влияние недооценивать, другие, наоборот, придают ему слишком большое значение, но в целом все они соглашаются с тем, что такое влияние было и продолжается в наши дни.

ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ, РЕЛИГИЯ И НАУКА

Важное значение для взаимопонимания между богословами и учеными, как считают многие христианские богословы, для теологии имеет принцип дополнительности.

Как известно, согласно квантовой механике, невозможно одновременно получить точную информацию о скорости и координатах частицы. Для получения же о ней целостной информации физики используют принцип дополнительности, выдвинутый Н. Бором для истолкования познавательной ситуации, возникшей в квантовой механике.

Рассматривая дополнительность как эвристическое приспособление в познавательном процессе, многие теологи в своих доктринах используют ее язык.

Так, известный немецкий католический теолог Г.Кюнг замечает, что можно провести прямую параллель между непостижимостью и непредставимостью света как волны и частицы, и непостижимостью и непредставимостью феномена воскрешения.

При помощи языка дополнительности выражается также двойственность человеческого и божественного в единстве трех ипостасей, разрабатываются и применяются персональные и имперсональные модели Бога.
Например, описание П. Тиллихом Иисуса Христа как «персонального Слова и имперсонального Логоса», по мнению Я. Барбура, американского теолога Р. Рассела и ряда других теологов, явно требует применения теологической дополнительности.

Обсуждая эту проблему, богословы также подчеркивают, что использование принципа дополнительности, во многом обусловленное ограничениями нашего языка, позволяет нам говорить парадоксами, связывать вместе понятия, которые кажутся взаимоисключающими. В этой связи Р.Рассел, например, утверждает,

что «теологическая дополнительность ... может освещать многие противоречивые пункты в теологии».

Некоторые богословы даже полагают, что по принципу дополнительности можно вообще строить отношения между религией и наукой. Х.Ролстон, в частности, считает, что, исходя из возможности рассматривать электрон и как волну, и как частицу, и как волну и частицу одновременно, подобным образом можно трактовать и взаимоотношения религии и науки — они могут быть и исключающими, и дополняющими друг друга.

К ЕДИНОЙ КАРТИНЕ МИРА

Многие теологи рассматривают построение единой целостной картины мира как одну из важнейших задач не только науки, но и религии. Для ее решения они считают необходимым объединение религиозного и научного путей познания действительности.

Папа Иоанн Павел II подчеркивает, что «единство, которое мы ощущаем в творении на основе нашей веры в Иисуса Христа как Господина вселенной и соответствующее единство, к которому мы стремимся в наших человеческих обществах отражены и даже подкреплены тем, что открывает современная наука».

Наука дает нам понимание вселенной как целого, в котором все взаимосвязано.

Она формулирует законы, объединяющие огромное многообразие структур и организмов, представляющих мир на всех уровнях — от физического до социального. Поразительный пример здесь, как считает Иоанн Павел II предоставляет современная физика, в которой успешно идет поиск объединения всех четырех фундаментальных физических сил.
Научные теории, таким образом, обладают большими ресурсами, которые можно плодотворно использовать в теологическом исследовании. Но, как подчеркивает Иоанн Павел II, для адекватной реализации этих ресурсов теологии, несомненно, должны быть сведущими в науках. Кроме того, это предохранит их и от сверхпоспешного использования научных теорий (таких, например, как происхождение Вселенной в результате Большого Взрыва) в апологетических целях, и от преуменьшения, с другой стороны, значения таких теорий для углубления наших представлений в традиционных областях теологического исследования. При взаимодействии религии и науки силы обеих сторон должны быть хорошо сбалансированы.

Так, по мнению Ч. Гендерсона (и в таком стиле высказываются многие богословы), «игнорировать находки науки теологически безответственно, а игнорировать глубочайшие импульсы теологического духа — самоубийственно для науки. Чтобы понять универсум, мы должны пытаться понимать его, насколько это возможно, в его целостности».

Итак, по мнению богословов, в отношениях между христианством и наукой недостаточно просто избегать конфликтов, нужно найти путь к согласию и конструктивному взаимодействию, дающему возможность углубления представлений о Творце и творении, позволяющему создать единую, адекватную картину мира.

Таким образом, мы видим, что под влиянием особенностей современной эпохи — социального и научно-технического развития — в христианской религии происходят существенные изменения, которые демонстрируют не только огромную роль науки в жизни человечества, но и большие возможности развития религиозного сознания.

(99)

(100)
РАЗДЕЛ II
VI. НАУКА И ФИЛОСОФИЯ

Наука всегда была тесно связана с философией. Выдающиеся ученые всех времен внесли огромный вклад в ее развитие. Пифагор, Аристотель, Н.Коперник, Р.Декарт, Г.Галилей, И.Ньютон, Г.В.Лейбниц, А.Смит, В.Гумбольдт, Ч.Дарвин, Д.И.Менделеев, К.Маркс, Д.Гильберт, Л.Э.Я.Брауэр, А.Пуанкаре, К. Гедель, А.Эйнштейн, Н.Бор, В.И.Вернадский, Н.Винер, И.Пригожин, А. Дж.Тойнби, Дж.М.Кейнс, П.Сорокин, Ф.Соссюр, Л.С.Выготский, З.Фрейд, М.М.Бахтин не только имели выдающиеся достижения, определившие главные направления развития науки, но и существенным образом повлияли на стиль мышления своего времени, на его мировоззрение.

Философское осмысление достижений науки начало приобретать особенно большое культурное значение начиная с XVII века, когда наука стала превращаться во все более значительное общественное явление. Но вплоть до второй половины XIX века их обсуждение не было достаточно систематичным. Именно в это время философские и методологические проблемы науки превращаются в самостоятельную область исследований.

Засилье эмпиризма в естествознании в конце XVIII и в начале XIX вв. привело к возникновению иллюзорных надежд на то, что функции теоретического обобщения в науке могут взять на себя философы. Однако их реализация, особенно в грандиозных натурфилософских построениях Ф.Шеллинга и Г.Гегеля, вызвала у ученых не только явно выраженный скепсис, но даже и неприязнь.

«Мало удивительно, — писал К.Гаусс к Г.Шумахеру, — что Вы не доверяете путанице в понятиях и определениях философов-профессионалов. Если Вы посмотрите хотя бы на современных философов, у Вас волосы встанут дыбом от их определений».

Г. Гельмгольц отмечал, что в первой половине XIX в. «между философией и естественными науками, под влиянием шеллинго-гегелевской философии тождества, сложились малоотрадные отношения». Он считал, что такого рода философия для естествоиспытателей абсолютно бесполезна, поскольку она бессмыслена.

«Полагают, — писал известный историк философии К.Фишер, — что в то время в естествознании происходил шабаш ведьм, и Шеллинг был блуждающим огоньком, за которым бежали многие; теперь этот сон Валь-
пургиевой ночи рассеялся и не оставил ничего, кроме обыкновенных пос-следствий пирушки».

Вместе с тем наука постепенно стала преодолевать дефицит теоретических идей. Буквально во всех ее областях и, прежде всего, в математике и естествознании стали появляться плодотворные научные теории, значительно расширяющие горизонты науки, происходило существенное обогащение средств научного познания, его понятийного аппарата.

Так, например, в математике сложились основы математического анализа и теории вероятностей, были получены фундаментальные результаты в алгебре, созданы неевклидовы геометрии.

В биологии было развито учение о клеточном строении живого вещества, построена теория эволюции видов, развита концепция происхождения человека от обезьян, началось широкое использование физико-химических методов познания процессов жизнедеятельности.

Особенно велики были успехи физических наук. Во второй половине XIX в. здесь, наряду с механикой, ранее монополизированной теоретическую физику, появились электродинамика, термодинамика, молекулярно-кинетическая теория газов, а затем и статистическая физика. В арсенал активно используемых понятий вошли понятия поля, эфира, атома, энтропии.

Ученые стали применять в познании физических явлений методы феноменологического описания, математической аналогии, моделирования.

Наряду с методами математического анализа и дифференциальных уравнений, все большим успехом стали пользоваться методы теории вероятностей и математической статистики.

На страницах журналов постоянно обсуждались различные теоретические построения, и никого уже не удивляло ни их обилие, ни кратковременность жизни многих из них.

Неудивительно, что сами ученые, и особенно, физики, стремясь понять происходящее в их науке, все чаще обращаются к философии. Интерес к ней, угасший в результате крушения претензий натурфилософии, во второй половине XIX в. возрождается с новой силой.

Внимание ученых вновь стали привлекать проблемы философии и методологии науки.

— Каково содержание понятий числа, функции, пространства, времени, закона, причинности, массы, силы, энергии, жизни, вида и др.?
— Как сочетаются в научном познании анализ и синтез, индукция и дедукция, теория и опыт?
— Что обусловливает описательную, объяснительную и предсказательную функции теории?
— Какова роль эмпирических и теоретических гипотез?
— Каким образом происходят научные открытия и в чем заключается роль интуиции в получении нового знания?
— Как следует истолковывать понятие теории?
— Что обеспечивает науке возможность познавать истину и что в научном познании представляет собой таковую?

Эти и им подобные вопросы активно обсуждаются учеными в публичных докладах и диспутах, статьях и специальных монографиях. Все они были рождены прогрессом науки, и нужды ее требовали их скорейшего разрешения.

Однако ответить на них было совсем непросто.

1. ПОЗИЦИЯ МЕХАНИСТОВ

Подавляющее больше ученых во второй половине XIX в., следуя традиции, сложившейся в истории науки пытались истолковывать все эти проблемы, исходя из того, что наука способна отражать глубинные свойства бытия.

Это понимание сущности науки, уходящее своими корнями в глубокую историю, было значительно поддержано и огромными успехами развития физики на базе механики.

Именно здесь укрепилось представление ученых о том, что любые явления действительности представляют собой процессы, осуществляющиеся в пространстве и времени, что они причинно обусловлены и подчиняются небольшому количеству законов, на основе которых можно дать их сколь угодно точное описание.

Образцом научного постижения реальности служила при этом небесная механика.

Этим стилем мышления вдохновлялись в то время не только физики, но и биологи, психологи, экономисты, историки.

Знаменитый французский шахматист Ф.Филидор — первый некоронованный чемпион мира по шахматам и, кстати говоря, известный композитор XVIII в. — прославился в шахматах тем, что ввел представление о
стратегии в шахматной игре и оценке с этой точки зрения шахматной по-
зиции. При этом он исходил из того, что шахматист мог бы всегда выигры-
вать у любого соперника, если бы он знал законы шахматной игры.

Представители этого рода взглядов во второй половине XIX в. назы-
вались механизмами. К ним относили не только тех ученых, которые, по-
добно Г.Гельмгольцу и Г.Герцу, стремились объяснить все явления приро-
ды на основе законов механики, но и таких, как, например, Дж.Максвелл,
Л.Больцман, Х.Лоренц, Ч.Дарвин, которые отнюдь не разделяли этих
крайних взглядов.

Так, например, Л.Больцман писал: «Если понимать под механиче-
ским объяснением природы такое, которое основывается на законах со-
временной механики, то следует признать совершенно недостоверным то,
что атомистика будущего станет механическим объяснением природы».

Выдающийся русский ученый К.А.Тимирязев в публичной лекции,
прочитанной в 1887 г. в Политехническом музее, раскрывая огромное зна-
чение деятельности Ч. Дарвина для всего естествознания, утверждал: «Та-
ким образом, дарви-
низм дал в первый раз механическое объяснение совершения, целесооб-
разности, разумея под механическим объяснением обыкновенное каузаль-
ное, в отличие от телеологического».

Французский ученый А.Рей в начале XX в. писал, что если бы новые
идеи Х.Лоренца, Дж.Лармора и П.Ланжевена подтвердились и если бы вы-
яснилось таким образом, что законы механики зависят от законов электро-
динамики, то это вовсе не означало бы отказа от «механизма». «Чисто ме-
ханистическая традиция, — писал А.Рей, — продолжала бы сохраняться,
механизм шел бы по нормальному пути своего развития».

Самая главная черта механической трактовки физики заключается,
по мнению А.Рея в том, что «взгляд на физику, на ее метод, на ее теории и
их отношение к опыту остается абсолютно тождественным с взглядами
механизма, с теорией физики начиная с эпохи Возрождения».

Таким образом, в конце XIX в. механизмами называли не только тех,
кто пытался свести все явления действительности к механическим процес-
сам, но и всех тех, кто, продолжая традиции классиков механики, рассмотр-
нял науку как отражение существенных свойств объективного мира, кто
видел задачу научного познания в том, чтобы объяснить любое явление на
основании предположения о его существовании в пространстве и времени
и как результат взаимодействия определенных причин.
Однако при попытках философски осмыслить достижения науки с этих позиций ученые столкнулись с огромными трудностями. Мощный взрыв теоретических идей и быстрое расширение средств и методов научного познания не удавалось вместить в непротиворечивую картину мира и целостную последовательную теорию познания.

2. ВЗГЛЯДЫ ПОЗИТИВИСТОВ

В этих условиях и приобрел популярность позитивизм, который стал претендовать на единственно верную философию и методологию науки. Его цели были определены достаточно ясно. (107)

Как писал Э. Мах, нужно прежде всего удалить из естествознания «старую, отслужившую свою службу» философию, которой «большинство естествоиспытателей придерживается еще в настоящее время».

Именно против этой реалистической традиции, истолковывающей научное знание как отражение свойств объективного мира, и выступили позитивисты во главе с Э. Махом. Стоит только правильно понять сущность науки, говорили они, и все метафизические проблемы, не дающие покоя виднейшим представителям естествознания в их постоянном стремлении постичь устройство мироздания окажутся разрешенными, поскольку будет обнаружена их надуманность и бессмысленность.

Еще родоначальник позитивизма О. Конт считал, что философия как метафизика могла оказать положительное воздействие на развитие представлений о мире лишь в период детства науки.

Основой всей научной деятельности, по мнению О. Конт, является опыт. Однако, считал он, никакое эмпирическое исследование не может начаться без определенных теоретических предпосылок, разработка которых сама нуждается в помощи опыта. Как же была разрешена эта проблема «курицы и яйца»? Ведь не могло же существовать теоретических представлений, когда науки еще не было.

Спасение, считал О. Конт, пришло от философии. Она временно взяла на себя функции научной теории и тем самым способствовала рождению науки.

Различного рода метафизические системы, как бы фантастичны они ни были, оказали важную услугу человечеству.

«Таким образом, писал О. Конт, — под давлением, с одной стороны, необходимости делать наблюдения для образования истинных теорий, а с другой — не менее повелительной необходимости создавать себе какие-
нибудь теории для того, чтобы иметь возможность заниматься последовательным наблюдением, человеческий разум должен был оказаться с момента своего рождения в заколдованным кругу, из которого он никогда не выбрался бы, если бы ему, к счастью, не открылся естественный выход благодаря само—

произвольному развитию теологических понятий, объединивших его усилия и давших пищу его деятельности». «Все эти несбыточные надежды, — продолжал свою мысль О.Конт, — все эти преувеличенные представления о значении человека во Вселенной, которые порождает теологическая философия и которые падают при первом прикосновении позитивной философии, являются в начале тем необходимым стимулом, без которого совершенно нельзя было бы понять первоначальную решимость человеческого разума взяться за трудные исследования».

Однако, как считал О.Конт, теологический взгляд на мир, высшим этапом развития которого явилась классическая философия, должен быть полностью замещен чисто научными позитивными теориями, построенными на непосредственном наблюдении и опыте. Науке, вставшей на свои собственные ноги, уже не нужны философские кости. Она сама в силах решать любые разумно поставленные проблемы.

Все философские мучения ученых могут быть легко устранены, говорили сторонники позитивистской философии и методологии науки. Нужно лишь осознать, что они являются результатом неверного истолкования сущности науки.

В самом деле, разве не порождены эти проблемы тем, что наука неизменно трактовалась ученными как описание некой объективной реальности, стоящей за наблюдаемыми явлениями? Это, по мнению Э.Маха, К.Пирсона, П.Дюгема и их последователей, — одно из самых распространенных и вредных заблуждений прошлого. Ученый имеет дело с эмпирической данной ему действительностью, и только в ее пределах он обладает суверенностью.

П. Дюгем раскрыл одну важную проблему в истолковании научной теории.

— Если теория, как считал П.Дюгем, имеет отношение лишь к эмпирическому материалу, тогда ученый получает возможность оценивать ее правильность посредством сопоставления следствий теории с этими данными.
— Но если теория призвана не только описывать, но и объяснять сущность явлений, то как может он тогда судить о ее истинности?

В этом случае, по его мнению, ученый должен был бы неизбежно обращаться к общим представлениям о самом мире, на разработку которых отваживалась лишь философия.

«Рассматривая физическую теорию как гипотетическое объяснение материальной действительности, — писал П.Дюгем, — мы ставим ее в зависимость от метафизики».

Однако ставить науку в зависимость от философии, считал П.Дюгем, — это значит вовлекать ее в бесплодные споры о природе реальности, которые без всякой надежды на прогресс ведутся философами с незапамятных времен.

Работая на уровне явлений, ученый, по мнению П.Дюгема, принципиально не может выйти за их предел. Поэтому у него нет средств для того, чтобы утвердить или, напротив, опровергнуть какие-либо суждения о самом объективном мире.

И хотя тесная связь науки с метафизикой проявляется со всей очевидностью в творениях выдающихся ученых прошлого, она, противоречит подлинно научному познанию.

В теориях этих ученых всегда можно выделить чисто описательную часть, которая базируется на наблюдениях и эксперименте и ту, в которой ставится задача истолковать эмпирические данные как следствие сущности, лежащей за явлениями. Между этими частями, считает П.Дюгем, нет органической связи. С развитием науки первая часть неизменно совершенствуется, переходя из одной теории в другую и передавая новой теории в наследство все ценное, что имелось в прежней, вторая же — просто отбрасывается и заменяется новой, тем самым со всей очевидностью обнаруживая свою парадицическую сущность.

«Что многие из гениальных умов, которым мы обязаны современной физикой, строили свои теории в надежде дать явлениям природы объяснение, — пишет П.Дюгем, — в этом не может быть ни малейшего сомнения. Но отсюда ничего еще не следует против мнения нашего о физических теориях, которое мы изложили выше. Фантастические надежды могут дать толчок к удивительным открытиям, но отсюда еще не следует, чтобы эти открытия давали плоть и кровь химерам, давшим толчок к их нарождению. Смелые изыскания, давшие мощный толчок к развитию географии, обя-
заны своим происхождением искателям приключений, искавшим страну, богатую золотом. Однако же, далеко еще недостаточно для того, чтобы наносить Эльдорадо на наши географические карты».

Феноменологическое истолкование научной теории как описательной, как схемы, классифицирующей эмпирические данные, устраняет из нее объяснительную часть, а тем самым освобождает теорию от метафизики, предоставляя ученым решать все научные проблемы доступными ему средствами, специально разработанными в его области науки. Идеалом научной теории, с этой точки зрения, является термодинамика, в которой отсутствуют понятия, содержание которых выходит за пределы наблюдающего, за пределы опыта.

Отсюда не следует, как отмечает Э.Мах, обязательность исключения из арсенала современной физики таких понятий как атом, масса, сила и т.п. Не нужно только впадать в теоретико-познавательное заблуждение, приписываая им реальность, не следует «считать основами действительного мира те интеллектуальные вспомогательные средства, которыми мы пользуемся для постановки мира на сцене нашего мышления».

На определенном этапе развития науки они вполне могут быть полезны как орудия экономного, рационального «символизирования опытного мира».

Пусть атом остается «средством, помогающим изображению явлений и служит тем, чем служат математические функции».

Но постепенно, по мере развития науки, естествознание, полагает Э.Мах, найдет возможность освободиться от такого способа упорядочения эмпирического знания. И все эти псевдообъекты и характеристики так называемой объективной реальности останутся лишь в пыли библиотек.

Однако теоретические построения в науке вовсе не произвольны.

Да, по мнению П. Дюгема, который видел в физических теориях образец научного мышления, «теоретическая физика не постигает реальности вещей, а она ограничивается только опи-}

(111)

санием доступных восприятию явлений при помощи знаков или символов», она «не в состоянии рассмотреть позади явлений, доступных нашему восприятию, действительные свойства тел».

Вместе с тем научные теории в процессе развития науки дают нам все более и более совершенные и естественные классификации наблюдаемых явлений. У нас имеется чувство соответствия теории действительно-
сти, которое, с точки зрения П. Дю-гема, не может быть обосновано средствами самой науки, а является достоянием здравого смысла.

«В основе всех наших учений, — пишет он, — самым ясным образом сформулированных, строго логически выведенных, мы всегда найдем это беспорядочное стечение тенденций, стремлений и интуиции. Нет такого глубокого анализа, который мог бы разделить их, чтобы разложить их на элементы более простые. Нет такого языка, достаточно тонкого и гибкого, чтобы определить и сформулировать их. И тем не менее, истины, которые открывает нам здравый человеческий рассудок, столь ясны, столь достоверны, что мы не можем ни признавать их, ни усомниться в них». Того, кто заявил бы, что научные теории представляют собой мираж и иллюзию, писал П. Дюгем, «вы не могли бы заставить замолчать из принципа противоречия; вы могли бы только сказать, что он лишен здравого смысла».

Итак, согласно позитивизму, подлинным знанием являются факты и эмпирические закономерности. Научные теории дают лишь систематизацию фактов и эмпирических закономерностей, которые имеют тенденцию становиться все более совершенными. Наука не беспредпосылочна. Она прочно опирается на здравый смысл. Ученый, стремящийся достичь успеха в науке, не нуждается ни в какой философии. Информированность о результатах научных исследований, профессиональное владение специальными методами, хорошее чувство здравого смысла и немного везения — вот все, что ему нужно.

Эти идеи, хотя они и не были поддержаны большинством ученых, несомненно, содействовали развитию представлений о науке. Вокруг работ позитивистов велись бурные дискуссии, которые выявили существенные расхождения в трактовке проблем методологии науки.

В XX веке позитивизм О. Конта, Э. Маха, П. Дюгема был подвергнут острой критике за феноменалистическую трактовку науки, которая, вопреки заявлениям ее авторов, вовсе не была свободна от метафизических аргументов.

Кроме того, развитие самой науки привело к очевидному поражению феноменализма.

Ученым удалось проникнуть в мир атома и элементарных частиц. Их реальность теперь уже невозможно было отрицать.

В науке стали привычными смелые обобщения, далеко выходящие за пределы наблюдаемого.
Теоретические идеи опережали и направляли эксперимент и наблюдение.

Радикально изменившиеся представления о пространстве, времени, закономерности, причинности, уровнях реальности стали основой новой научной картины мира, которой стали руководствоваться ученые в своей деятельности.

3. «КОПЕРНИКАНСКИЙ ПОВОРОТ» В ФИЛОСОФИИ

Однако позитивизм обрел новую силу в контексте бурного развития науки в XX столетии и вновь привлек внимание к проблемам философского осмысления науки. По мнению неопозитивистов, их предшественники в критике философии и выявлении природы науки, хотя и наметили правильное направление, сами не смогли пойти по нему достаточно энергично и последовательно.

Это было не случайно — замечают неопозитивисты. Ведь до самого последнего времени для решения этих проблем не было необходимых средств.

Положение радикально изменилось в результате невиданного прежде развития логики.

Одним из важнейших его стимулов было стремление найти прочный фундамент для интенсивно развивающейся математики. Исследования Дж.Буля, Э.Шредера, Дж.Пеано, Г.Фреге, Д.Гильберта, Б.Рассела, А.Уайтхеда и их последователей превратили прежнюю логику, которая незначительно отличалась от аристотелевской, в современную с сильно развитым формальным аппаратом, с необозримыми возможностями эффективных приложений.

Логический анализ языка, предпринятый Б.Расселом, а затем и его учеником Л. Витгенштейном, открыл новые горизонты и в рассмотрении традиционных проблем философии и методологии науки.

На этой основе и произошло зарождение новой разновидности позитивизма — логического позитивизма, в рамках которого философия и методология науки стали предметом специального изучения.

Особую роль в генезисе логического позитивизма приверженцы этой доктрины отводят Л.Витгенштейну. Ведь именно он наиболее четко обосновал утверждение, что постановка проблем традиционной философии «основывается на неправильном понимании логики нашего языка», которое ознаменовало, по словам М.Шлика, поворот во всей философии.
Как же обосновывается это положение?
Оно оказывается прямым следствием определенных взглядов на природу различных языковых выражений. Согласно логическому позитивизму,
все правильно построенные высказывания могут быть либо аналитическими, либо синтетическими.
— Первые из них, представляя разнообразные тавтологии, ничего не говорящие о мире, относятся к утверждениям логики и математики.
— Вторые, несущие определенное эмпирическое содержание, составляют предмет опыtnых наук.
И те, и другие предложения могут быть либо истинными, либо ложными.
— Для первых из них этот вопрос решается чисто аналитически.
— Для вторых — посредством эмпирической проверки.
— Никаких других осмысленных предложений быть не может.
Философы, говорят неопозитивисты, претендуют на особое знание о мире. Но откуда они его могут получить? Все, что человек знает о действительности, он получает на основании определенных контактов с миром, которые в науке становятся предметом специального систематического изучения.
У философа нет и не может быть никаких особых способов постижения действительности.
Ну что, например, философ может сказать о поведении микрообъектов? На основании чего он будет строить свои суждения? Все, что можно здесь сказать разумного, дает нам физика.
Таким образом, философия как особая наука не имеет права на существование.
Но в таком случае оказывается, что для философии, которая претендует на особое знание о действительности, просто не остается места. Ее высказывания о мире — это псевдовысказывания, она рассуждает о минимых объектах и о несуществующих свойствах, ее выводы не могут иметь какого-либо значения, она бессодержательна и бессмысленна.
«Вся философия в старом смысле, — пишет по этому поводу Р. Карнап, — связывается ли она ныне с Платоном, Фомой Аквинским, Кантом, Шеллингом или Гегелем, строит ли она новую «метафизику бытия» или «гуманистическую философию», оказывается перед неумолимым
приговором новой логики не только как содержательно ложная, но и как логические непрочная, потому бессмысленная».

Неопозитивисты очарованы своей блестящей находкой. Наконец-то удалось дать точную оценку традиционной философии. Интуиция прежних ее противников заменена строго обоснованным заключением.

Философия как метафизика даже не ложна, она бессмысленна.

«Различие между нашим тезисом и тезисом ранних антиметафизиков стало теперь отчетливее, — писал Р.Карнап. — Метафизика не простая «игра воображения» или «сказка». Предложения сказки противоречат не логике, а только опыту; они осмыслены, если даже и ложны».

Метафизическая же философия не только антиэмпирична, но и анти-логична.

Эмпирик, как отмечал М.Шлик, не будет доказывать ложность утверждений метафизика. Он скажет ему: ты вообще ничего не высказываешь. Он не станет с ним спорить, а скажет: я тебя не понимаю.

«При ближайшем рассмотрении, — писал Р.Карнап, — в неоднократно изменявшейся одежде узнается то же содержание, что и в мифе: мы находим, что метафизика также возникла из потребности выражения чувства жизни, состояния, в котором живет человек, эмоционально-волевого отношения к миру, к ближнему, к задачам, которые он решает, к судьбе, которую переживает».

Р.Карнап считает, что это выражение чувства жизни является, по существу, единственной причиной, благодаря которой творения философов метафизического толка привлекали прежде внимание многих мыслящих людей, да и сейчас волнуют немало наших современников. Высказывания философов прошлого, по его мнению, нельзя понимать буквально.

Метафизик ничего в действительности «не высказывает, а только нечто выражает как художник», поэтому он не вправе претендовать на общеизвестность своей философии.

Как писал Р.Карнап, «метафизик приводит для своих предложений аргументы, он требует, чтобы с содержанием его построений соглашались, он полемизирует с метафизиками других направлений, ищет опровержения их предложений в своих статьях». Но он не вправе это делать.

Метафизик подобен поэту.
А какой же смысл поэту пытаться «опровергнуть предложения из стихотворения другого лирика?» Ведь «он знает, что находится в области искусства, а не в области теории».

Как видно, неопозитивисты считают, что философы прошлого не имели дела с познанием. Каждый из них был прав, поскольку пытался выразить свое ощущение жизни, и ошибался, когда навязывал его другим. Теоретическая форма философии была, по их мнению, непомерным балластом, который сдерживал духовные порывы философов, мешая им достичь совершенных форм самовыражения. Вплоть до нашего времени, единообразно считают неопозитивисты, в философии отсутствовало понимание действительной природы философствования, не были использованы должным образом необходимые средства этого особого рода духовной деятельности.

Поэтому, по мнению Р.Карнапа, даже если учесть то, что метафизики выражали, сами того не осознавая, свое чувство жизни, они делали это далеко не лучшим образом, подобно музыкантам без музыкальных способностей.

Только теперь в результате применения современной логики к анализу философских построений удалось понять их действительный статус. Философы не случайно выражали свои антипатии новой логике. Они, видимо, предчувствовали, что она им ничего хорошего не предвещает. И они не ошиблись. Теперь раскрыта сущность их деятельности, всегда прежде окутываемая покровом некой таинственности.

Философия, как оказывается, никогда и не имела своего предмета.

Ее история есть история погони за миражами, нелепых попыток совершенно негодными средствами разрешить псевдопроблемы.

«Метафизика рушится, — заявляет М.Шлик, — не потому, что решение ее задач было бы смелым предприятием, которое не по плечу человеческому разуму (как приблизительно считал Кант), а потому, что этих задач вовсе нет. С обнаружением ложной постановки вопроса стала понятной сразу же история метафизических споров».

Таким образом, единственно допустимое решение метафизических проблем может, по мнению неопозитивистов, заключаться лишь в их элиминации. Поняв эту очевидную истину, люди перестанут тратить время на их обсуждение и сосредоточат свои усилия на разрешении реальных проблем познания и освоения окружающего их мира.
М. Шлик следующим образом описывает будущее философии: «Конечно, предстоит еще много арьергардных боев...; философские писатели будут еще долго дискутировать старые мнимые вопросы, однако в конце концов их перестанут слушать, и они будут похожи на актеров, которые про-

dолжают играть долгое время, прежде чем заметят, что зрители постепенно улизнули».

4. ФИЛОСОФИЯ КАК АНАЛИТИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ

Итак, философия принципиально невозможна как особая наука. Любые стремления построить систему собственно философских утверждений о действительности или процессе ее познания, в каких бы формах они ни реализовывались, обречены на провал.

Неужели на этом закончилась история философии?

Нет, это не конец, говорят неопозитивисты. Скорее уместно говорить о ее начале. Ведь только теперь появилась действительная возможность создания подлинной научной философии. Мы являемся свидетелями настоящей революции в философии, которая, как это присуще любым радикальным преобразованиям, не только ломает прежние устои, но и утверждает новые.

Да, философия невозможна как наука. Но отсюда еще не следует, что она невозможна и не нужна.

Но что же в таком случае она собой представляет?

«Ну хоть и не наука, — писал М. Шлик, — но, однако, нечто настолько значительное и большое, что она может также впредь, как и раньше, по-читаться королевой наук; стоит ли писать, что королева наук сама должна быть наукой. Мы узнаем теперь в ней — и этим положительно отметили великий переворот современности — вместо системы знаний систему действий; она есть та самая деятельность, благодаря которой устанавливается или обнаруживается смысл высказываний».

Новый взгляд на сущность философии был выдвинут Б. Расселом, а затем разработан Л. Витгенштейном. В «Логико-философском трактате», изданном в 1921 г., Витгенштейн высказал все основные положения будущей доктрины логического позитивизма.

— «Вся философия есть "критика языка"».
— «Цель философии — логическое прояснение мыслей».
— «Философия не теория, а деятельность».
— «Философская работа состоит, по существу, из разъяснений».

— «Результаты философии — не некоторое количество "философских предложений", но прояснение предложений».
— «Философия должна прояснять и строго разграничивать мысли, которые без этого являются как бы темными и расплывчатыми».

Важнейшей особенностью истолкования природы философии логическими позитивистами является подчеркивание ими ее научности.

Философия непременно должна быть научной. Но как это возможно, если она не может быть наукой?

Оказывается, в этом требовании нет ничего противоречивого. Научность философии определяется тем, что она в качестве объекта своей аналитической деятельности имеет утверждения науки, а кроме того, и сама эта деятельность осуществляется средствами вполне науочными — методами современной математической логики.

Р. Карнап видит в этом две важнейшие черты новой философии, отличающие ее от традиционной.

«Первая отличительная черта, — пишет он, — состоит в том, что это философствование осуществляется в тесной связи с эмпирической наукой, даже во всех случаях, когда наука подвергается критике и уточняется; в этой связи устанавливается не только провозглашение задачи, но и сама задача».

Логический анализ предложений науки имеет две функции: негативную и позитивную.

— Первая направлена на то, чтобы устранить бессмысленные понятия и предложения,
— Вторая, позитивная, функция заключается в том, чтобы прояснять логическую структуру теорий эмпирических наук и математики, посредством их аксиоматизации выявлять реальное эмпирическое содержание используемых в науке понятий и методов, прояснять действительные научные утверждения.

Потребность в этих функциях возникает в силу того, что научная деятельность представляет собой естественный процесс, характеризуемый как проявление различного рода стихийностей внутри самой науки, так и воздействием на нее различных внешних факторов.

Ученый широко пользуется обыденным языком, включающим в себя значительную компоненту неопределенности.

Его деятельность всегда имеет определенную психологическую окраску.

В силу различных социально-исторических причин он оказывается обремененным скарбом понятий и проблем традиционной философии.

Наука постоянно находится под воздействием внешних по отношению к ее сущности религиозных и политических интересов.

Задача философа — выявить то, что присуще науке как таковой по ее природе.

А этого можно достичь, считают логические позитивисты, только на пути логической реконструкции науки.

Необходимость логического анализа науки стала, по мнению логических позитивистов, особенно ясной в настоящее время. Ее вычленение было прямым результатом естественной дифференциации труда ученого, порожденной бурным развитием науки.

«До нашего поколения, — писал Х.Рейхенбах, — еще не было такого, чтобы вырос новый класс философов, натренированных в технике наук, включая математику, и которые сконцентрировались на философском анализе. Эти люди видели, что необходимо новое распределение работы, что научные исследования не оставляют человеку достаточно времени, чтобы делать работу логического анализа, и наоборот, логический анализ требует концентрации, которая не оставляет времени научной работе, — концентрации, которая вследствие своего стремления к прояснению больше, чем к открытию, может даже мешать научной производительности. Профессиональные философы науки являются продуктом ее развития». (120)
Так обосновывают свою новую философию виднейшие представители логического позитивизма. При этом логике отводится совершенно исключительная роль. Как говорил Х.Рейхенбах, философские мучения «можно успокоить только с помощью урока логики». Те же, кто питаются к ней неприязнь, пусть не стремятся достигнуть успехов в философии. Их удел другой. Пусть эти люди попробуют приложить свои способности «в менее абстрактных применениях силы человеческого разума».

5. ПРОТИВОСТОЯНИЕ ПОЗИТИВИЗМУ

Однако эти идеи позитивизма не находят признания у современных ученых. Выдающиеся представители науки XX в. столь же решительно, как и их предшественники, утверждают, что целью их теоретической деятельности является постижение закономерностей мироздания.

Позитивисты же прилагают немало сил, чтобы убедить своих оппонентов, что Н. Коперник, И. Кеплер, И. Ньютон, Дж. Максвелл, Л. Больцман, Ч. Дарвин, Д. И. Менделеев и другие творцы науки якобы наивно верили в возможность познания объективной реальности просто потому, что правильного и аргументированного понимания сущности научного знания еще не было.

Но как объяснить мощную солидарность с учеными прошлого современных деятелей науки?

«Разумеется все сходятся на том, — писал А.Эйнштейн, — что наука должна устанавливать связь между опытными фактами с тем, чтобы на основании уже имеющегося опыта мы могли предсказывать дальнейшее развитие событий». По мнению же позитивистов, замечает он, «единственная цель науки состоит в как можно более полном решении этой задачи». Однако я не уверен, что столь примитивный идеал мог бы зажечь такую сильную исследовательскую страсть, которая и явилась причиной подлинно великих достижений. «Без веры в то, что возможно охватить реальность нашими теоретическими построениями, без веры во внутреннюю гармонию нашего мира, — утверждает А.Эйнштейн, — не могло быть никакой науки. Эта вера есть и всегда остается основным мотивом всякого научного творчества».

Наука XX в. с особенной ясностью обнаруживает свои прочные связи с философией, которые раньше едва осознавались.

«В наше время, писал А.Эйнштейн, — физик вынужден заниматься философскими проблемами в гораздо большей степени, чем это приходи-
лось делать физикам предыдущих поколений. К этому физиков вынуждают трудности их собственной науки».

Ученые прошлого привыкли говорить об эмпирических данных как об абсолютно достоверном фундаменте науки, который формируется в результате непосредственного восприятия действительности. Использование различных приборов и устройств рассматривалось лишь как простое усиление органов чувств человека. Однако в современной науке и, особенно в физике, стало ясно, что эмпирическое познание всегда в принципе включает в себя и теоретические представления.

«То, что вы видите в сильный микроскоп, созерцаете через телескоп, спектроскоп или воспринимаете посредством того или иного усилительного устройства, - г- все это требует интерпретации», — писал М. Борн.

Само по себе показание прибора не может рассматриваться как научный факт. Оно становится им лишь тогда, когда соотносится с изучаемым объектом, что обязательно предполагает обращение к теориям, описывающим работу используемых приборов и различных экспериментальных приспособлений.

С другой стороны, стало ясно, что и теории весьма непросто связаны с объектами, которые они призваны описывать.

Научная теория — это такое гносеологическое образование, которое несет на себе не только черты объекта познания, но и специфические характеристики знания и процесса познания. Поэтому она неизбежно содержит в себе как онтологический, так и гносеологический компоненты.

Если цель научного познания заключается в том, чтобы проникнуть в сущность явлений и описать объективную реальность, а в этом убеждены подавляющее большинство ученых, то одной из важнейших задач, стоящих перед исследователем, является построение интерпретации научной теории, в которой она получила бы соответствующее онтологическое и гносеологическое истолкование. Только после этой работы научная теория превращается в знание, в то время как без такой интерпретации она представляет собой лишь технический аппарат, при помощи которого можно формально манипулировать с эмпирическими данными.

Однако выявление онтологического и гносеологического содержания теории не может осуществляться без определенных представлений об общих характеристиках бытия и процесса его познания. Поэтому ученый не может достичь своей цели, игнорируя философию.
Это обстоятельство вполне осознается выдающимися учеными нашего времени.

Так, например, А.Эйнштейн писал, что «наука без теории познания (насколько это вообще мыслимо) становится примитивной и путанной».

А М. Борн считал, что «физика, свободная от метафизических гипотез, невозможна».

По мере развития науки, усложнения ее задач все больше выявляется необходимость в специальном исследовании ее философских оснований.

«В мельчайших системах, как и в самых больших, — писал М.Борн, — в атомах, как и в звездах, мы встречаем явления, которые ничем не напоминают привычные явления, и которые могут быть описаны только с помощью абстрактных концепций. Здесь никакими хитростями не удается избежать вопроса о существовании объективного, независящего от наблюдателя мира, мира «по ту сторону» явлений».

Поэтому, по мнению М.Борна, современная физика никак не может обойтись без обращения к философии, осуществляющей «исследование общих черт структуры мира и наших методов проникновения в эту структуру».

А вот что говорит по этому поводу один из самых крупных специалистов по философии науки К.Поппер.

«Философы-аналитики полагают, что или вообще не существует подлинных философских проблем, или что философские проблемы, если таковые все же есть, являются всего лишь проблемами лингвистического употребления или значения слов. Я же, однако, считаю, что имеется по крайней мере одна действительная философская проблема, которой интересуется любой мыслящий человек. Это проблема космологии — проблема познания мира, включая и нас самих (и наше знание) как часть этого мира. Вся наука, по моему мнению, есть космология, и для меня знание философии, не в меньшей степени, чем науки, состоит исключительно в том вкладе, который она вносит в ее разработку. Во всяком случае, для меня и философия, и наука потеряли бы всякую привлекательность, если бы они перестали заниматься этим».

VII. СТРУКТУРА НАУЧНОГО ЗНАНИЯ

Что представляет собой научное знание?
Какова его структура?
Для того чтобы ответить на эти вопросы, необходимо прежде всего обратить внимание на то, что научное знание — это сложная система с весьма разветвленной иерархией структурных уровней.
Для решения нашей задачи вычленим три уровня в структуре научного знания:
— локальное знание, которое в любой научной области соотносится с теорией;
— знания, составляющие целую научную область;
— знания, представляющие всю науку.

1. ЭМПИРИЧЕСКИЙ И ТЕОРЕТИЧЕСКИЙ УРОВНИ ЗНАНИЯ
Рассмотрим вопросы, связанные со структурой локальной области знания.
Очевидно, что здесь можно выделить по крайней мере два уровня:
уровень эмпирических знаний
и
уровень теоретических знаний.
На конкретном примере — механике — выясним, что представляют собой уровни эмпирического и теоретического знания.
Эмпирия здесь связана с наблюдениями и экспериментами над механическими перемещениями твердых тел или жидкостей. Совокупность эмпирических данных дают нам также астрономические наблюдения за перемещениями небесных тел — и это очень важные знания, на которые опирается механика.
В свое время А. Пуанкаре говорил, что самое большое благо, которое принесла астрономия человечеству, заключается в том, что, глядя на небо, люди поняли, что все в мире подчиняется законам и что перемещение небесных тел — это самое очевидное проявление закономерности окружающей нас действительности.
Для знаний, полученных на эмпирическом уровне, характерно то, что они являются результатом непосредственного контакта с «живой» реальностью в наблюдении или эксперименте. На этом уровне мы получаем знания об определенных событиях, выявляем свойства интересующих нас
объектов или процессов, фиксируем отношения и, наконец, устанавливаем эмпирические закономерности.

Над эмпирическим уровнем науки всегда надстраивается теоретический уровень.

Теория, представляющая этот уровень, строится с явной направленностью на объяснение объективной реальности (главная задача теории заключается в том, чтобы описать, систематизировать и объяснить все множество данных эмпирического уровня).

Однако теория строится таким образом, что она описывает непосредственно не окружающую действительность, а идеальные объекты.

Механика, например, описывает не реальные процессы, с которыми человек непосредственно имеет дело в действительности, а относящиеся к идеальным объектам, например, материальным точкам.

Идеальные объекты, в отличие от реальных, характеризуются не бесконечным, а вполне определенным числом свойств. Материальные точки, с которыми имеет дело механика, обладают очень небольшим числом свойств, а именно массой и возможностью находиться в пространстве и времени.

Таким образом, идеальный объект строится так, что он полностью интеллектуально контролируется.

В теории задаются не только идеальные объекты, но и взаимоотношения между ними, которые описываются законами. Кроме того, из первичных идеальных объектов можно конструировать производные объекты.

В итоге теория, которая описывает свойства идеальных объектов, взаимоотношения между ними, а также свойства конструкций, образованных из первичных идеальных объектов, способна описать все то многообразие данных, с которыми ученый сталкивается на эмпирическом уровне.

Происходит это следующим образом: из исходных идеальных объектов строится некоторая теоретическая модель данного конкретного явления и предполагается, что эта модель в существенных своих сторонах, в определенных отношениях соответствует тому, что есть в действительности.

Уточним теперь наши представления о теоретическом уровне знания. Важно иметь в виду, что этот уровень знания обычно расчленяется на две существенные части, представляемые фундаментальными теориями.
и

теориями, которые описывают конкретную (достаточно большую) область реальности, базируясь на фундаментальных теориях.

Так, механика описывает материальные точки и взаимоотношения между ними, а на основе ее принципов далее строятся различные конкретные теории, описывающие те или иные области реальности.

Для описания поведения, например, небесных тел строится небесная механика. При этом Солнце представляет собой центральное тело, обладающее большой массой, а планеты — тела, движущиеся вокруг этого центрального тела по законам механики и по закону всемирного тяготения. Эта конкретная модель строится из материальных точек и рассчитывается, исходя из принципов механики.

Таким же образом — на базе механики — строятся и другие конкретные теории: твердого тела, жидкости и т.д. Часто при построении таких теорий удаётся обойтись только принципами механики, однако при построении, например, теории тепловых явлений в конце концов выясняется, что принципов и законов механики недостаточно, что нужны еще вероятностные представления.

Важно еще раз отметить, что в теории мы всегда имеем дело с идеальным объектом: в фундаментальных теориях — с наиболее абстрактным идеальным объектом, а в теориях второго поколения — с определенными производными от этих идеальных объектов, на основе которых конструируются модели конкретных явлений действительности.

Роль теории в науке определяется тем, что в ней мы имеем дело с интеллектуально контролируемым объектом, в то время как на эмпирическом уровне — с реальным объектом, обладающим бесконечным количеством свойств и, вообще говоря, интеллектуально не контролируемым.

Поскольку в теории мы имеем дело с интеллектуально контролируемым объектом, то мы можем, вообще говоря, описать теоретический объект как угодно детально и получить в принципе как угодно далекие следствия из теоретических представлений. Коль скоро наши исходные абстракции верны, мы можем быть уверены, что и следствия из них будут верны. Сила теории состоит в том, что она может развиваться как бы сама по себе, без прямого контакта с действительностью. Естественно, что исходные принципы должны соотноситься с действительностью.

Итак, в структуре научного знания выделяются два существенно различных, но взаимосвязанных уровня:
эмпирический и теоретический

Но, чтобы адекватно описать локальную область знания, этих двух уровней оказывается недостаточно. Необходимо выделить часто нефиксируемый, но очень существенный уровень структуры научного знания — уровень философских предпосылок, содержащий общие представления о действительности и процессе познания, выраженные в системе философских понятий.

2. ФИЛОСОФСКИЕ ОСНОВАНИЯ НАУКИ

Рассмотрим область явлений микромира, которая изучается квантовой механикой, и определим, в каких аспектах ученый имеет здесь дело с философскими предпосылками.

— Квантовая механика опирается на определенную совокупность эмпирических данных, получаемых при изучении микропроцессов с помощью различных приборов: счетчиков Гейгера, камеры Вильсона, фотоэмульсии и т.д.

— Теория — квантовая механика — не только описывает данные эмпирического уровня, но и может предсказывать результаты определенных событий в этой области.

— Однако более внимательный анализ показывает, что этим описание данной области науки не исчерпывается. Оказывается, что существенной роль в квантовой механике играет истолкование ее аппарата с точки зрения определенных представлений о реальности и процессе ее познания.

Всем известна колоссальная по широте и глубине обсуждаемых проблем дискуссия, которая развернулась вокруг проблем квантовой механики между двумя направлениями, виднейшими представителями которых были А.Эйнштейн и Н.Бор. Ее суть состояла в том, как соотнести аппарат квантовой механики с окружающим нас миром.

Из всего комплекса обсуждавшихся проблем рассмотрим лишь одну, связанную с истолкованием пси-функции. Эта функция входит в основное уравнение квантовой механики — уравнение Шрёдингера, которое описывает поведение микрообъектов. Оказывается, что пси-функция дает лишь вероятностные предсказания, и поэтому остро встает вопрос о том, какова сущность этой вероятности.

— А. Эйнштейн считал, что вероятностный характер предсказаний в квантовой механике обусловлен тем, что квантовая механика неполна.
Сама действительность полностью детерминистична, в ней всей определено, все принципиально — вплоть до деталей — предсказуемо, а квантовая механика опирается на неполнную информацию о действительности, поэтому она дает вероятностные предсказания.

Представим себе, что мы подбрасываем монету и она упала на орла. Мы говорим, что вероятность выпадения монеты на орла равняется 1/2. Каковы основания этого вероятностного суждения? Поведение монеты объективно вероятностно, или мы просто не полностью знаем все детали того процесса, которые приводят к этому результату?

В классической физике эту ситуацию обычно рассматривают таким образом: поскольку все в мире однозначно предопределено, то, если бы мы точно учили все детали — распределение массы монеты, точку приложения силы, величину импульса, с какими молекулами воздуха и как будет взаимодействовать монета при движении и т.д., мы могли бы высказать аподиктическое, а не вероятностное суждение о том, как упадет монета.

Таким образом, с этой точки зрения, в природе отсутствуют вероятностные процессы, а наши вероятностные суждения связаны с тем, что мы не имеем полной информации о действительности.

А. Эйнштейн полагал, что так же обстоит дело и с квантово-механическими явлениями. Следует обратить внимание на то, что истолкование А.Эйнштейном аппарата квантовой механики базируется:

— во-первых, на определенных представлениях о действительности, согласно которым в мире все однозначно детерминировано;

— во-вторых, на представлениях о характере научной теории: теория, в которой есть вероятность, неполна, но неполные теории имеют право на существование;

— Бор предложил другой вариант истолкования этой же ситуации.

Он утверждал, что квантовая механика полна и она отражает принципиально неустранимую вероятность, характерную для нашего постижения микромира.

Эта точка зрения совершенно противоположна точке зрения А. Эйнштейна и в плане представлений о мире и в плане представлений о гносеологическом статусе вероятностной теории.
Очевидно, что, вычленяя в структуре локального научного знания только два уровня — эмпирический и теоретический — невозможно истолковать научную теорию как знание.

С этих позиций ее в лучшем случае можно истолковать лишь как аппарат описания и предсказания эмпирических данных.

Однако такая позиция никогда не устраивала ученых.

Ученые никогда на этом не останавливаются, стремясь истолковать науку не только как описание непосредственно наблюдаемых явлений, но и как отражение объективной реальности, которая лежит за явлениями, за наблюдаемым. В рассмотренном случае и у А.Эйнштейна и у Н.Бора отчетливо видна эта тенденция, выразившаяся в построении определенных интерпретаций квантовой механики с позиций различных философских представлений.

Обратим внимание на то, что в науку теория может войти в таком виде, в каком она не представляет собой знание в полном смысле этого слова. Она уже функционирует как определенный организм, уже описывает эмпирическую действительность, но в знание в полном смысле она превращается лишь тогда, когда все ее понятия получают онтологическую и гносеологическую интерпретацию.

Итак, в науке существует уровень философских предпосылок.

Ясно, что в зависимости от того, с какой наукой и с какой теорией мы имеем дело, философские основания выявляют себя в большей или меньшей степени. В квантовой механике они очевидны. Здесь до сих пор идут острейшие споры по проблемам интерпретации ее математического аппарата и по сей день отсутствует позиция, которая примирит бы спорящие стороны. Аналогичные примеры можно легко обнаружить в других науках.

Сколько бурных философских дискуссий вызвало учение об эволюции живой природы или генетика!

А какими интеллектуальными баталиями сопровождалось освоение идей структурализма в лингвистике, литературоведении и искусствоведении!

Что представляют собой математические объекты, можно ли всю математику построить на основе теории множеств, возможно ли доказательство непротиворечивости математики, как объяснить невероятную приложимость математических построений к областям реальности, которые со-
вершенно не похожи на мир, непосредственно доступный нашему восприятию?

Обсуждение такого рода вопросов привлекало и привлекает внимание многих математиков и философов.

Вместе с тем, как свидетельствуют факты, в науке существует немало теорий, которые не вызывают каких-либо споров по поводу их философских оснований. Это связано с тем, что они базируются на философских представлениях, близких к общепринятым, и поэтому не подвергаются рефлексии: они не выступают предметом специального анализа, а воспринимаются как нечто само собой разумеющееся.

Обратим внимание теперь на то, что и эмпирическое знание находится в зависимости от определенных философских представлений. В самом деле, рассматрив эмпирический уровень науки.

Очевидно, что в любом наблюдении или эксперименте ученый исходит из того, что реальные объекты и явления, с которыми он сталкивается, причинно обусловлены. Мы в данном случае отвлекаемся от природы причинно-следственных связей, которые могут быть весьма сложны, как, например, в микромире, рассматривая эмпирические знания, с которыми имеет дело большинство наук.

— В этом случае ученый всегда исходит из того, что все имеет свою причину. Если, например, результат эксперимента не повторяется, он ищет причину этого неповторения.

— Как известно, результаты эксперимента требуют обязательной статистической обработки. Без этого они не могут быть научными и не могут быть опубликованы. Это требование вытекает из представлений о том, какую роль в экспериментальных результатах играют ошибки измерения.

— Далее статья с результатами эмпирических исследований публикуется спустя некоторое время после проведения эксперимента. Здесь очевидно предположение, что эксперимент имеет значимость не только в данный момент времени, что те законономерности, которые фиксируются на эмпирическом уровне, устойчивы, неизменны, если, конечно, речь не идет о какой-либо особой ситуации, например, о быстроменяющейся социальной области, где эта динамика специально учитывается.

Таким образом, на эмпирическом уровне знания существует определенная совокупность общих представлений об окружающем нас мире.
Эти представления настолько очевидны, что мы не делаем их предметом специального исследования. Они просто передаются из поколения в поколение как традиция.

Но они существуют, и рано или поздно меняются и на эмпирическом уровне.

Оказывается, что уровень философских предпосылок связан со стилем мышления определенной исторической эпохи. Например, для науки XVIII в. было характерно представление о научной теории как зеркальном отражении объективной реальности, дающем полную картину данной области действительности.

Когда-то Ж.Лагранж говорил, что И.Ньютон не только великий человек, но и один из самых счастливых людей в мире, потому что теорию Солнечной системы можно построить только один раз.

Мы знаем, что ее уже не раз перестраивали после И.Ньютона, но раньше считалось, что, коль скоро научная теория построена, то она дает адекватное знание в своей предметной области.

Кроме того, считалось, что в самом мире нет никакой вероятности, поэтому и теория принципиально не может содержать в себе вероятности. Это была очень важная методологическая установка, которая во многом определяла стиль научного мышления того времени. С этой позиции смотрели на любую область действительности.

Например, при построении теории социальных явлений за образец брали небесную механику и пытались выдвинуть основные принципы (свободы, братства, равенства и т.д.), с помощью которых можно было бы описать любое социальное явление так же, как с помощью принципов механики и закона всемирного тяготения можно объяснить небесные явления.

Ясно, что в XX в. ситуация меняется. Мы теперь склонны придавать большее значение скорее вероятностным теориям, чем выражающим одномозначный детерминизм.

Итак, существует совокупность философских представлений, которые пронизывают и эмпирический, и теоретический уровни научного знания.

Обращая внимание на значение философии для научного познания, Л.Бриллюэн писал, что «ученые всегда работают на основе некоторых философских предпосылок, и, хотя, многие из них могут не сознавать этого,
эти предпосылки в действительности определяют их общую позицию в исследовании». «Наука, — отмечал А.Эйнштейн, — без теории познания (насколько это вообще мыслимо) становится примитивной и путанной».

3. ВЗАИМОСВЯЗЬ РАЗЛИЧНЫХ УРОВНЕЙ ЗНАНИЯ

Обратим прежде всего внимание на то, что эмпирический и теоретический уровни органически связаны между собой:

— теоретический уровень существует не сам по себе, а опирается на данные эмпирического уровня, и в этом смысле связь теории и эмпирии очевидна;

— но существенно то, что и эмпирическое знание оказывается несвободным от теоретических представлений, оно обязательно погружено в определенный теоретический контекст.

Рассмотрим область микроявлений, где совокупность эмпирических данных дают различные приборы. Эти данные представляют собой, например, определенные траектории на фотобумаге, которые показывают нам, как взаимодействуют частицы и т.д. Но, конечно, совокупность эмпирических данных является определенным знанием о действительности лишь тогда, когда эти данные истолковываются с позиций определенных теоретических представлений.

Так, например, на фотографии, сделанной в магнитном поле, мы видим определенные спиральные линии.

Зная, что в магнитном поле заряженные частицы движутся по спирали, причем электроны в одну сторону, а позитроны — в другую, мы считаем, что на фотографии изображено движение электрона или позитрона.

Если мы не имеем определенных теоретических представлений, то, конечно, щелчки счетчика Гейгера или траектории в камерах Вильсона нам ничего не говорят о микромире.

На эмпирическом уровне необходима интерпретация работы приборов, осуществляемая в рамках механики, термодинамики, электродинамики и других теорий. Это значит, что эмпирический уровень научных знаний обязательно включает в себя то или иное теоретическое истолкование действительности.

Очень существенно, что эмпирический уровень знания погружается в такие теоретические представления, которые являются непроблематизируемыми. Например, когда мы пытаемся обосновать эмпирически квантовую механику, то экспериментальные данные, используемые при этом, оказы-
ваются нагруженными не квантовомеханическими, а классическими представлениями, которые в данном случае мы не ставим под сомнение. Мы проверяем эмпирией более высокий уровень теоретических построений, чем тот, что содержится в ней самой. Отсюда фундаментальное значение эксперимента как критерия истинности теории.

Несмотря на теоретическую нагруженность, эмпирический уровень является более устойчивым, более прочным, чем теория, в силу того, что теории, с которыми связано истолкование эмпирических данных, — это теории другого уровня. Если бы было иначе, то мы имели бы логический круг, и тогда эмпирия ничего не проверяла бы в теории и не могла бы быть критерием ее истинности. Эти уточнения очень важны для понимания закономерностей развития науки.

Итак, в локальной области научного знания мы выделили три уровня:

эмпирический,
теоретический,
философский —
и показали, что все они взаимосвязаны.

4. СТРУКТУРА НАУЧНОЙ ДИСЦИПЛИНЫ

Рассмотрим теперь структурный уровень знания, охватывающий целую научную область. Очевидно, что здесь есть ряд локальных областей, сосуществующих друг с другом. Однако необходимо отметить обстоятельство, которое сразу резко усложняет дело и вносит множество проблем в рассмотрение этого вопроса.

Сформулируем его так:

что входит в структуру, например, современной физики?

Входят ли в структуру современной физики только те теории, которые созданы в XX в., или входят также и теории прошлого?

Конечно, целый ряд теорий прошлого не входит в современную физику (например, теория теплорода и многие другие). Острота вопроса состоит в следующем:

входят ли в состав современной физики такие теории, которые генетически связаны с современными концепциями, но созданы в прошлом?

— Например, мы знаем, что механические явления сейчас описываются на базе квантовой механики. Входит ли в структуру современного физического знания классическая механика?
— Мы знаем, что тепловые явления сейчас описываются на базе статистической термодинамики, а входит ли классическая термодинамика в структуру современного научного знания?

Такие вопросы сразу обостряют рассматриваемую проблему.

Обратим внимание и на такой важный вопрос:

как мы представляем себе будущее любой области науки?

Известно, что одна из четко выраженных тенденций в рассмотрении этого вопроса состоит в том, что допускается принципиальная возможность построения некой единой теории, которая охватывала бы фундаментальные принципы всей предметной области, скажем физики, и на базе которой все остальные физические теории были бы построены как частные случаи. Такое стремление — построить некую единую теорию, охватывающую целую предметную область, — не раз наблюдалось в истории физики, биологии, географии и т.д. Практически во всех областях науки так или иначе проявлялась эта установка.

— Например, до конца XIX в. все физики были убеждены, что в качестве единой теории может выступать механика, что на базе механики можно в принципе построить всю физику. Потом выяснилось, что это невозможно.

— Попытались в качестве единой теории использовать электродинамику, но это тоже оказалось невозможным. Выяснилось, что существуют различные виды взаимодействий: электромагнитные, слабые, сильные, гравитационные, которые трудно объединить в одной теории.

— Пытались построить и единую теорию поля. Сейчас в связи с достижениями физики элементарных частиц на этом пути получены фундаментальные результаты.

Как к этому отнести?

Можно ли рассматривать в качестве идеала структуры данной области науки описанную выше картину?

Это очень важные вопросы. Однако, прежде чем на них ответить, выйдем за пределы этой проблемы, расширим ее и покажем, каким образом она могла бы быть экстраполирована, а затем с позиции тех представлений, которое будут получены в результате такой экстраполяции, вернемся к этой проблеме.
Представим себе, что в определенной предметной области, допустим в физике, можно построить единую теорию.

Но если мы можем построить такую теорию в области физики, то почему мы не можем с позиции этой теории рассмотреть и химические явления? Ведь химические явления фактически базируются на тех же физических взаимодействиях.

Почему бы не представить себе дело так, что в конце концов будет построена единая физическая теория, которая охватит и химические явления? Ведь граница между, скажем, электромагнитными и тепловыми явлениями, которые изучаются в физике и объединить которые она претендует в рассматриваемой программе, — эта граница принципиально не более резкая, чем граница между явлениями тепловыми и химическими, или электромагнитными и химическими, или — более широко — между явлениями физическими и химическими.

Коль скоро мы приходим к выводу, что принципиально возможна единая теория, охватывающая химические и физические явления, то почему бы нам не представить дело так, что и биологические явления будут охватываться этой теорией, ибо биологические процессы на молекулярном уровне представляют собой определенные физико-химические взаимодействия.

Итак, представим себе единую теорию, охватывающую физические, химические, биологические явления. Не следует ли отсюда, что в будущем все явления действительности от простейших физических до сложнейших социальных явлений будут описаны на базе некой фундаментальной теории в том стиле, в каком, например, на базе механики строятся теоретические описания движения небесных тел, жидкостей, газов и др.?

Такая глобальная программа кажется нам сомнительной не только в силу того, что она очень далека от сегодняшней действительности, но и потому, что она слишком просто решает вопрос о структуре науки.

Интуиция подсказывает, что эта программа не учитывает специфики явлений, относящихся к различным предметным областям.

Конечно, когда мы объединяем физическое, математическое, историческое знание одним термином «наука», мы делаем это непроизвольно: существует совокупность определенных универсальных принципов, критериев научности, которые отделяют науку от других сфер человеческой культуры, деятельности, и тем самым объединяют различные области знания.
Но, вероятно, каждая из них обладает своей спецификой, разъединяющей их в пределах науки.

Может ли одна теория охватить все богатство стилей научного мышления, способов познания, существующее в современной науке?

Или, быть может, они представляют лишь строительные леса, выполняющие лишь временные функции?

По-видимому, нет, и вряд ли это исторически преходящее явление. Ориентируясь на эту интуицию, выскажем ряд соображений о конкретных причинах несостоятельности этой программы.

В первую очередь обратим внимание на то, что объекты, описываемые в разных науках, значительно отличаются друг от друга. Возьмем, например, физику и историю. Весьма сомнительно, что столь разные объекты могут описываться на основании одних и тех же принципов.

Рассмотрим, какого рода отличия имеются между объектами физики и истории.

— Сразу отметим, что физические явления не зависят от сознания человека. Знание об этих объектах никак не влияет на сами эти объекты.

Можно ли считать, что знание об объектах социальной действительности не влияет на сами эти объекты? Очевидно, что так считать нельзя.

Предсказали, скажем, энергетический голод в 2000 г. Как только люди узнают о такой опасности, они немедленно примут меры для того, чтобы, например, интенсивнее проводились исследования в области термоядерного синтеза. Ясно, что информация о социальном объекте используется для изменения самого этого объекта. Знание о будущем человека оказывается таким, что оно изменяет предсказываемое потенциальное будущее. Реально оно не осуществляется именно потому, что предсказывается. Очевидно, что здесь совершенно иная ситуация, чем в физике. И вряд ли будут когда-либо найдены общие принципы, которые объединят столь различные явления, настолько, что эти дисциплины сольются в единое целое.

— Можно отметить и другие различия между физическими и социальными явлениями. Физические явления, например, несомненно, гораздо проще, чем социальные. Именно относительная простота исходных физических объектов, возможность их интеллектуальной контролируемости позволяет раскрыть существенные свойства даже достаточно сложных физических явлений, строя детально математизированные теории.
Итак, абстрактные объекты, на базе которых мы описываем физические явления, очень прсты. Какие же объекты мы должны выбрать в качестве исходных, чтобы социальные явления можно было описать с такой, же точностью, как и физические?

Казалось бы здесь следовало бы построить прежде всего некоторый абстрактный образ человека, который бы выполнял функции идеального объекта теории, описать его свойства и отношения к другим людям и окружающей- среде и далее конструировать все социальные объекты и их отношения, исходя из этой основы. Однако такой путь, хотя в целом он и реализуется, не приводит к столь же строгим и целостным Теориям как это имеет место в физике.

С подобным положением дела мы сталкиваемся и при описании биологических, географических, геологических и других явлений. Объекты всех этих наук гораздо сложнее, чем физические объекты, и поэтому возникают громадные трудности при построении количественных теорий — теорий такого же типа, как физические.

Конечно, можно надеяться на то, что появятся принципиально новые способы математического описания. Известно, к каким колоссальным результатам привели в физике разработка дифференциального и интегрального исчислений или введение аппарата теории вероятности.

Быть может, появятся новые области математики, с помощью которых можно будет описать явления, не поддающиеся сейчас математизации.

Можно надеяться и на то, что в будущем будут глубоко раскрыты качественные характеристики социальных, биологических, географических и других явлений, что также расширит возможности построения более точных теорий в этих областях. Но приведет ли это к редукции всего научного знания к небольшому числу исходных фундаментальных принципов?

В свете изложенных нами аргументов представляется более правильной следующая точка зрения:

любая научная теория принципиально ограничена в своем интенсивном и экстенсивном развитии.

Научная теория — это система определенных абстракций, при помощи которых мы раскрываем субординацию существенных и несущественных в определенном отношении свойств действительности.
Можно сказать, что научная теория дает нам определенный срез действительности. Но ни одна система абстракций не может охватить всего богатства действительности. В науке обязательно должны содержаться различные системы абстракций, которые, вообще говоря, не только несовместимы, нередуцируемы друг к другу, но рассекают действительность в разных плоскостях. Эти системы абстракций определенным образом соотносятся друг с другом, но не перекрывают друг друга.

Поэтому, на наш взгляд, и невозможно сведение социальных явлений к биологическим, биологических — к физико-химическим, химических — к физическим. Более того, мы полагаем, что даже в пределах физики существует такого рода несводимость и что невозможно построить такую теорию, из которой следовало бы все богатство физических явлений. Можно показать, что, например, тепловые явления, описываемые статистической механикой, несовместимы с механической, что в них есть определенная специфика, которая не может быть отражена в механике.

Единство науки выражается не в абсолютной редукции знания, а в выявлении сложных взаимоотношений между различными системами абстракций.

Теории могут быть глубокими, но узкими, то есть охватывать относительно узкую предметную область, как, например, электродинамика, термодинамика и т.д. Бывают теории широкие, но бедные — это теории типа общей теории систем. Вполне допустимо, например, что в физике появится теория, описывающая с единой точки зрения все фундаментальные взаимодействия. Но эта теория не сможет отразить специфику разнородных физических явлений. Это связано с тем, что такая интегральная теория, объединяющая различные явления, с необходимостью должна будет отвлекаться от их специфика. Естественно, что подобная теория будет фиксировать лишь общее, коль скоро она относится к разнородным явлениям.

По мнению В. Гейзенберга, в современной физике существует по крайней мере четыре фундаментальных замкнутых непротиворечивых теорий: классическая механика, термодинамика, электродинамика, квантовая механика. В своей области приложимости они наилучшим образом описывают реальность.

По его мнению, которое представляется очень убедительным, аналогичная тенденция прослеживается и в развитии других наук. Везде мы видим стремление выделить определенные группы устойчивых связей дей-
ствительности и описать их замкнутой системой специфических понятий, которые и образуют научные теории.

Итак, в науке всегда реализуется интегративная функция.

Теория всегда объединяет огромное многообразие явлений, сводя их к небольшому количеству принципов.

Но такое объединение не может быть безграниченным.
Чем оно ограничено?
Этого априори, конечно, нельзя сказать.
Важно представлять себе, что эти границы существуют.
Они естественно выявляются в процессе развития науки.
Об этом убедительно свидетельствует ее история.

Таким образом, любая научная дисциплина, как бы велики не были успехи в интеграции охватываемых ею знаний, состоит из нескольких научных областей, специфика которых отображается относительно замкнутыми системами понятий, представляющих собой теории.

Именно они объединяют вокруг себя соответствующий данной предметной области эмпирический материал.

5. ХАРАКТЕР НАУЧНОГО ЗНАНИЯ И ЕГО ФУНКЦИИ

Обратим внимание еще на один очень важный момент, который показывает несостоятельность представлений о структуре научного знания, основанных на редукционизме.

Несомненно, что важнейшая задача любой научной теории, как и вообще науки, — отражать объективную реальность. Но наука — это создание человеческого разума, это плод деятельности человека.

Наука существует не только для того, чтобы отражать действительность, но и для того, чтобы результаты этого отражения могли быть использованы людьми.

На науку оказывает влияние определенная форма культуры, в которой она формируется. Стиль научного мышления вырабатывается на базе не только социально-научных, но и философских представлений, обобщающих развитие как науки, так и всей человеческой практики.

Когда мы говорим о различных областях науки, то очень важно представлять себе то, что разные науки, вообще говоря, выполняют разные общественные функции.
Можно ли сказать, что культурные функции истории и физики одинаковы?

Конечно, и физика и история дают нам знание о действительности. Но представим себе, что история была бы построена по образцу физики и давала бы нам теории, подобные физическим. Тогда целый ряд очень важных функций истории, которые она сейчас выполняет, были бы элиминированы.

— История дает нам не только законы развития общества, но и является для нас источником социальных прецедентов. Нам очень важно знать не только закономерности истории в целом, закономерности функционирования тех или иных социальных структур, но нам важно детальное описание отдельных конкретных исторических моментов.

— История, будучи наукой, является, подобно литературе, той базой, на основании которой человек входит в культуру, учится жить. Она дает ему систему жизненно важных прецедентов. Человек сталкивается с огромным количеством сложных и непредсказуемых ситуаций и, готовя его к жизни, мы пытаемся расширить его социальный опыт за счет приобщения к истории культуры, к литературе для того, чтобы он пережил — не реально, не в действительности — огромное множество тех ситуаций, с которыми люди сталкивались ранее или с которыми они могли бы сталкиваться. Как говорил О. Бисмарк, только дураки учатся на собственных ошибках, а умные учатся на ошибках других.

Мы полагаем, что эта функция истории чрезвычайно важна и специфична — такой функции у физики нет. Эта очень важная функция истории свидетельствует также и о том, что историю не надо сводить к тому идеалу научности, который существует сейчас в физике.

Тот идеал научности, который мы видим в физике, вряд ли в полной мере реализуем и в других науках. Несомненно, что тенденция реализации этого идеала наблюдается сейчас во многих науках, и это прогрессивная и эффективная тенденция. Но она не безгранична, и ее границы определяются как объективным разнообразием действительности, так и спецификой самой науки.
VIII. ФУНКЦИИ НАУЧНОГО ИССЛЕДОВАНИЯ

1. «ЗНАТЬ, ЧТОБЫ ПРЕДВИДЕТЬ»

Каковы функции научного исследования? О.Конт обозначил их с помощью такого афористического изречения:

«Знать, чтобы предвидеть».

Думается, можно принять его в качестве исходной точки при рассмотрении поставленного вопроса. С помощью последующих разъяснений, уточнений и поправок мы сможем постепенно перейти от этого афоризма к развернутому представлению о функциях научного исследования.

При всем своем эмпиризме О.Конт не склонен был, однако, сводить процесс научного познания к собранию единичных фактов.

Конечно, рассуждает он, «первое основное условие всякого здорового научного умозрения» состоит в том, что воображение постоянно должно находиться в подчинении у наблюдателя. Однако неправильное толкование этого условия «часто приводило к тому, что стали слишком злоупотреблять этим велиkim логическим принципом, превращая реальную науку в своего рода бесплодное накопление несогласованных фактов...».

Дух истинной науки «в основе не менее далек от эмпиризма, чем от мистицизма; именно между этими двумя одинаково гибельными ложными путями он должен всегда прокладывать себе дорогу...».

Массив научного знания представляет О.Конту объемным: над слоем фактов возвышается слой научных законов, причем

«именно в законах явлений действительно заключается наука, для которой факты в собственном смысле слова, как бы точны и многочисленны они ни были, являются всегда только необходимым сырым материалом».

Эта структура научного знания порождает разнообразие тех функций, которые выполняет наука. Над функциями, связанными с получением и обработкой опытных данных, возвышаются функции, выполняемые на основе научных законов. Так, устанавливая связь между каким-либо отдельным явлением и законом, мы получаем объяснение этого явления.

Но, — как считал О.Конт, — главное «назначение положительных законов — рациональное предвидение».

«Рассматривая же постоянное назначение этих законов, можно сказать без всякого преувеличения, что истинная наука, далеко не способная образоваться из простых наблюдений, стремится всегда избегать по воз-

kupov_v_i_i_dr_filosofiya_i_metodologiya_nauki
могущественности непосредственного исследования, заменяя последнее рациональным предвидением... Таким образом, истинное положительное мышление заключается преимущественно в способности знать, чтобы предвидеть, изучать то, что есть, и отсюда заключать о том, что должно произойти согласно общему положению о неизменности естественных законов».

2. Э. МАХ О СТАТУСЕ ОПИСАНИЯ В НАУКЕ

Последователь Конта в эмпиристской трактовке науки Э.Мах объявил единственноой функцией науки описание.

Фиксацию результатов опыта с помощью выбранных в данной науке систем обозначений (языка) Э.Мах объявил идеалом научного познания.

«Но пусть этот идеал достигнут для одной какой-нибудь области фактов, — писал Э.Мах. — Даёт ли описание все, чего может требовать научный исследователь? Я думаю, что да! Описание есть построение фактов в мысях, которое в опытных науках часто обусловливает возможность действительного описания... Наша мысль составляет для нас почти

полное возмещение факта, и мы можем в ней найти все свойства этого последнего».

Но как же в таком случае быть, скажем, с объяснением и предвидением, которые всеми предтечами Э.Маха принимались за основные функции научного исследования? Очень просто. Они, с его точки зрения, в сущности, сводятся к описанию.

«Я уже не раз доказывал, — писал Э.Мах, — что так называемым каузальным объяснением тоже констатируется (или описывается) только тот или иной факт, та или иная практическая зависимость». Когда «Ньютон «каузально объясняет» движения планет, устанавливая, что частичка массы т получает от другой частицы массы М ускорение... и что ускорения, получаемые первой частичкой от различных частичек массы, геометрически складываются, то этим опять-таки только констатируются или описываются факты, полученные (хотя бы и окольными путями) путем наблюдения... Описываая, что происходит с элементами массы в элементы времени, Ньютон дает нам указание, как из этих элементов получить по известному шаблону описание какого угодно индивидуального случая. И так обстоят дело с остальными явлениями, которые объясняет теоретическая физика. Все это не изменяет, однако, ничего в существе описания. Все сводится к общему описанию в элементах».

Точно также, по мнению Э.Маха, обстоит дело с предвидением.
«Требуют от науки, чтобы она умела предсказывать будущее... Скажем лучше так: задача науки — дополнить в мыслях факты, данные лишь отчасти. Это становится возможным через описание, ибо это последнее предполагает взаимную зависимость между собой описывающих элементов, потому что без этого никакое описание не было бы возможно».

Э. Мах считал, что всякое научное знание есть знание эмпирическое и никаким другим быть не может, утверждая, будто научные законы и теории — это лишь особым образом организованная, как бы спрессованная эмпирия.

«Великие общие законы физики для любых систем масс, электрических, магнитных систем и т.д. ничем существенным не отличаются от описаний». К примеру, «закон тяготения Ньютона есть одно лишь описание, и если не описание индивидуального случая, то описание бесчисленного множества фактов в их элементах». Закон свободного падения тел Галилея в сущности есть лишь мнемоническое средство. Если бы мы для каждого времени падения знали соответствующее ему расстояние, проходимое падающим телом, то с нас этого было бы достаточно. Но память не может удержать такую бесконечную таблицу. Тогда мы и выводим формулу....

«Но это правило, эта формула, этот «закон» вовсе не имеет более существенного значения, чем все отдельные факты, вместе взятые».

Точно также им характеризуется и теория.

Как писал Э. Мах, «быстрота, с которой расширяются наши познания, благодаря теории, придает ей некоторое количественное преимущество перед простым наблюдением, тогда как качественно нет между ними никакой существенной разницы ни в отношении происхождения, ни в отношении конечного результата».

Да и преимущество-то это не абсолютное, поскольку в другом отношении теория проигрывает эмпирии. Дело в том, что Э. Мах различает прямое и косвенное описание.

«То, что мы называем теорией, или теоретической идеей, относится к категории косвенного описания». Последнее «бывает всегда сопряжено ... с некоторой опасностью. Ибо теория всегда вред заменяет мысленно факт A другим... факт B. Этот второй факт может в мыслях заменять первый в известном отношении, но будучи все же другим фактом, он в другом отношении, наверное, заменит его не может». По этой причине «казалось бы не только желательным, но и необходимым, не умаляя значения теоретических идей для исследования, ставить, однако, по мере знакомства с
новыми фактами на место косвенного прямое описание, которое не содер-
жит в себе уже ничего несущественного и ограничивается лишь логиче-
ским обобщением фактов».

Все, что не может быть непосредственно наблюдаемым, по его мне-
нию, не может относиться к научным знаниям. Вместе с тем, как отмечал Э.Мах, ученые склонны в своих попытках постичь реаль-
ность выходить далеко за пределы наблюдаемого.

В этой связи, писал он, «стоит вспомнить частицы Ньютона, атомы Демокрита и Дальтона, теории современных химиков, клеточные молеку-
лы и гидростатические системы, наконец, современные ионы и электроны. Напомним еще о разнообразных физических гипотезах вещества, о вихрях Декарта и Эйлера, снова возродившихся в новых электромагнитных токо-
вых и вихревых теориях об исходных и конечных точках, ведущих в чет-
вертое измерение пространства, о внемировых тельцах, вызывающих явле-
ние тяжести и т.д. и т.д. Мне кажется, что эти рискованные современные предпредставления составляют почтенный шабаш ведьм».

Атомно-молекулярную теорию он назвал «мифологией природы».
Аналогичную позицию занимал и известный химик В.Оствальд.
По этому поводу А.Эйнштейн писал:
«Предубеждение этих ученых против атомной теории можно, нео-
сомненно, отнести за счет их позитivistской философской установки. Это — интересный пример того, как философские предубеждения мешают правильной интерпретации фактов даже ученым со смелым мышлением и тонкой интуицией, предрассудок — который сохранился и до сих пор — заключается в убеждении, будто факты сами по себе, без свободного тео-
ретического построения, могут и должны привести к научному познанию».

Таким образом, массив научного знания Э.Мах представляет уже не как объемный, многоуровневый, но как плоский, одноуровневый.

3. «ОСНОВНАЯ МОДЕЛЬ НАУЧНОГО ОБЪЯСНЕНИЯ»
Сведение науки к сугубо эмпирическому знанию (радикальный эм-
пиризм), а ее функций к описанию (дескриптивизм) имело вполне опреде-
ленные причины, и в том числе объективные.

Триумф механики в XVII—XIX вв. привел к тому, что механическое объяснение стали рассматривать как единственный истинно научный спо-
соб объяснения.
Когда физик, говорит Ф. Эддингтон, стремился объяснить что-либо, «его ухо изо всех сил пыталось уловить шум машины. Человек, который сумел бы сконструировать гравитацию из зубчатых колес, был бы героем викторианского века».

Но в XIX в., особенно во второй его половине, получает широкий размах исследование самых разнообразных немеханических явлений. Многочисленные попытки объяснить и вообще теоретически осознать их стальным способом потерпели поражение. Это и вызвало у некоторых ученых разочарование в объяснительном исследовании как таковом.

Но наступил XX век, и вскоре ситуация начала меняться коренным образом. Даже физики отказались от программы сведения всех физических явлений к механическим. В начале века создается теория относительности, а затем квантовая механика, которые определяют новые пути развития физического познания. Больших успехов на пути разработки собственных понятийных средств и методов исследования удается достичь химии, биологии, лингвистике, психологии и другим наукам.

Развитие науки в первой трети нашего века непосредственно ставило вопросы о соотношении научного факта и закона, эмпирии и теории, о сущности объяснения и предвидения, об их структуре, роли и месте в исследовательском процессе. И эти вопросы не остались без ответа.

Спустя столетие возрождается к жизни концепция объяснения и предвидения, сформулированная О. Контом и его сподвижником Дж. Ст. Миллем. В книге «Логика исследования» (1935 г.) К. Поппер изложил модель (схему) объяснения и предвидения. Дальнейшая разработка этой модели осуществлялась К. Гемпелем в статье «Функция общих законов в истории» (1942 г.) и особенно в статье «Исследования по логике объяснения» (1948 г.) (написанной в соавторстве с П. Оппенгеймом), а также в ряде его последующих работ.

«Дать причинное объяснение события, — писал К. Поппер, — значит дедуцировать положение, описывающее его, используя в качестве посылок дедукции один или более универсальных законов совместно с определенными единичными положениями — начальными условиями».

Пусть необходимо объяснить событие (e) — разрыв некоторой нити. Оно описывается посредством единичного фактуального положения (E) — «Данная нить разорвалась». Допустим, нам известно другое событие (c) — к нити был подвещен груз весом два фунта, тогда как предел ее прочности

(150)
равен одному фунту. Последнее событие может быть описано посредством фактического положения (С) — «Данная нить была нагружена весом, превышающим предел ее прочности». Теперь мы отыскиваем такой причинно-следственный закон (З), который фиксирует, что события типа (с) всегда (с необходимостью) вызывают к жизни события типа (е): «Всегда, если нить нагружена весом, превышающим предел ее прочности, то нить разрывается», или в общем виде — «Всегда, если С, то Е».

Завершенное объяснение имеет вид дедуктивного вывода:

Всегда, если нить нагружена весом, превышающим предел ее прочности, то нить разрывается (З)

Данная нить была нагружена весом, превышающим предел ее прочности (С)

Линия —

Данная нить разорвалась (Е)

или в более общем, хотя и несколько упрощенном виде:

Всегда, если С, то Е

С

Линия —

Е

Таким образом, событие (Е) объясняется путем апелляции к другому событию — (С) и к причинно-следственному закону, согласно которому события типа (С) всегда (с необходимостью) вызывают к жизни (являются причиной) события типа (Е).

К.Гемпель и П.Оппенгейм обозначили:

положение, которое описывает объясняемый объект (здесь положение Е), термином «экспланандум» (букв. — объясняемый),

а совокупность объясняющих положений (здесь — положения С и З) — термином «эксплананс» (букв. — «объясняющие»).
Как нетрудно заметить, эксплананс в описанной модели совпадает с посылками дедуктивного вывода, а экспланандум — с его заключением. К. Поппер рассмотрел предельно простой случай: в эксплананс включено всего одно положение о начальных условиях и одно положение о законе, а дедуктивный вывод имеет одноступенчатый вид.

К. Гемпель и П. Оппенгейм показали, что чаще всего в эксплананс входит целый ряд тех и других положений, а процесс вывода приобретает сложный, подчас многоступенчатый характер.

4. ЯВЛЯЕТСЯ ЛИ ПРОЦЕСС ОБЪЯСНЕНИЯ ДЕДУКТИВНЫМ?

Как видим, модель объяснения Поппера — Гемпеля является дедуктивной. Однако она оказывается таковой лишь в конце, в итоге всего объяснительного процесса. Сам же этот процесс имеет существенно иной характер.

И действительно, что мы делаем, когда осуществляем дедуктивный вывод? Из некоторого множества имеющихся в нашем распоряжении положений (посылок) мы по определенным логическим правилам с необходимостью получаем (дедуктивно выводим) новое положение (заключение).

А какую картину мы имеем в случае «дедуктивного» объяснения Поппера — Гемпеля?

Да прямо противоположную.

В самом начале объяснительного процесса нам дано только то, что требуется объяснить (экспланандум E), и задача состоит в том, чтобы каким-то способом отыскать объясняющие положения (эксплананс C и Z). Иными словами, к изначально заданному заключению надо подобрать посылки, из которых это заключение вытекало бы дедуктивным образом.

Как происходит это отыскание, этот подбор?

Поскольку единственное, что нам дано в начале процесса объяснения — экспланандум (E), постольку лишь он сам и может служить указателем того, как надо вести поиск эксплананса.

А что можно получить, пользуясь таким указателем? Только схему искомого закона Z. Она должна иметь вид:

«Всегда, если...то Е».
Получив эту схему, исследователь попытается припомнить такие из известных ему законов, которые бы удовлетворяли ей.

Пусть ему удалось вспомнить несколько подобных законов («Всегда, если А, то Е», «Всегда, если В, то Е» и «Всегда, если С, то Е»).

Далее, поочередно используя каждый из этих законов в качестве посылки в сочетании с другой посылкой, в роли которой выступает экспланandum, человек делает вывод вида:

Всегда, если А, то Е
Е

А

Этот вывод категорически запрещен дедуктивной логикой, ибо он не имеет логически необходимого характера. Он логически вероятен, индуктивен (что и символизирует двойная черта), но без него не обойтись — только он может дать нам то последнее, в чем мы еще нуждаемся — положение о начальных условиях (А). Поскольку вывод индуктивен, постольку это положение лишь гипотетично, является пока только версией.

Аналогичным образом получаются заключения В и С. Завершается поиск эксплананса выяснением того, какая из полученных версий — А, В или С — истинна. В результате мы получаем искомое положение о начальных условиях. И вот только теперь можно придать полученному объяснению дедуктивную форму в соответствии с моделью Поппера-Гемпеля.

Тем самым, рассмотренная разновидность объяснения в действительности является дедуктивной в очень незначительной части. Дедукция в ней используется лишь на самой последней стадии объяснительного процесса — стадии не столько собственно исследовательской, сколько «косметической», упорядочивающей полученные результаты, придающей им строгий и «презентабельный» вид.

Что же касается остальной части (правильнее было бы сказать «остального целого») этого процесса, то здесь выполняются как раз индуктивные выводы, а также вневыводные логические акции и, страшно сказать, даже вообще внелогические познавательные действия.
Ну а как быть, если ни одна из полученных версий (А, В, С) не оказа-
лась истиною? А что делать, если исследователь вообще не припомнил ни
одного закона, который удовлетворял бы схеме «Всегда, если ... то Е»? Рекомендация в обоих случаях одна — попытаться найти (открыть) нужный
закон. Легко сказать — открыть! А как?
Таким образом, объяснительный процесс, конечно же, окажется еще
более сложным и далеким от «дедуктивной идилии».

5.КАКОЙ ВИД ОБЪЯСНЕНИЯ ГЛАВНЕЕ?

В рассмотренной модели объясняемым является единичное событие,
а в роли экспланандума, стало быть, выступает описывающее это событие
единичное фактуральное положение.

В обыденной жизни действительно в подавляющем большинстве
случаев приходится иметь дело с отдельными событиями.

Однако наука занимается объяснением не только единичных событий,
но и свойств, отношений, функций, субстратов («материалов», из ко-
торых «построены» вещи), структур и т.д. Кроме того, наука — и в этом
одно из ее существенных отличий от обыденного познания, — используя
свои законы для объяснения единичных объектов, в свою очередь, стре-
mится пойти дальше и объяснить сами эти законы.

Нет такой разновидности научных объяснений, которую вообще,
безотносительно к чему-либо можно было бы назвать основной, объявив
все остальное второстепенным. Это имело бы смысл делать лишь приме-
nительно к отдельным наукам или категориям наук.

Так, науки, с легкой руки неокантианцев получившие на-

(154)
первый закон является лишь частным случаем и из которого (или которых) его можно было бы дедуцировать».

Пусть надо объяснить закон «Железо электропроводно». Можно составить эксплананс из двух других законов и получить объяснение, которое в конечном счете будет иметь вид такого дедуктивного вывода:

Железо — металл
Металлы электропроводны
__
Железо электропроводно

а в более общем виде:

Всегда, если A, то B
Всегда, если B, то C
Всегда, если A, то C

Нетрудно заметить, что эта модель в определенном отношении аналогична «основной модели» (правда, — и это в высшей степени существенно — здесь эксплананс состоит только из законов, т. е. не содержит никаких положений о начальных условиях) и потому — в соответствии с принципами терминологии Поппера-Гемпеля — может быть названа «схемой дедуктивного объяснения закона».

По аналогии с тем, что было сказано выше, можно прийти к заключениям:

1) сам объяснительный процесс, процесс поиска положений (здесь — законов), из которых можно было бы составить эксплананс, и в данном случае не является дедуктивным;

2) в любом виде объяснения эксплананс будет представлять собой связную совокупность, т. е. систему законов. Из них по крайней мере один несет на себе основную объяснительную нагрузку (другие же играют вспомогательную роль), при этом основную нагрузку несут законы, при надлежащие к более высокому уровню, нежели объясняемый.

Вообще же, как правило, закон объясняется посредством его соотнесения с теорией.
И последнее. Ф. Бэкон неоднократно сетовал на то, что люди имеют скверную привычку, восходя в процессе познания вверх, перескакивать некоторые уровни, например, от низших «аксиом» переходить сразу к вышним — к принципам. По-настоящему, говорит он, наука должна строиться не так, но — путем последовательного и непрерывного восхождения. Может быть, и даже наверное, Бэкон был чересчур педантичен, но, как ни странно, история науки неоднократно демонстрировала его правоту в данном случае.

Так, по мнению одного из крупнейших социологов нашего века Р.Мерттона, главная беда социологической науки (речь идет о ее состоянии на середину столетия) — в том, что она состоит, с одной стороны, из множества прочно установленных путем обработки эмпирических данных законов низшего уровня, а с другой стороны, из множества высокоабстрактных, совершенно оторванных от этих законов (и от эмпирии), принципов. Выход из положения (и, как впоследствии оказалось, вполне справедливо) он видел в построении того, что он назвал «теориями среднего уровня», ибо «социология пока не готова к своему Эйнштейну, так как еще не обрела своего Кеплера».

6. ПОЧЕМУ КОЛОКОЛА ЗВОНЯТ НА ПАСХУ?

Теперь очень важно обратить внимание на то, что научное объяснение может быть не только причинным, т.е. таким, в котором положения о начальных условиях описывают причину объясняемого объекта, а объясняющие законы являются причинно-следственными.

Ученые нередко выполняют такие объяснительные процедуры, которые в определенном отношении противоположны причинным, а именно апеллируют не к причине, породившей данный объект, но — к тем следствиям, которые он сам породил. Таковы хорошо известные и широко распространенные в таких науках, как физиология, кибернетика, социология, функциональные объяснения.

Как известно, некоторые категории объектов способны регулярно производить однотипные следствия. Такие следствия называются функциями, если они способствуют сохранению существующего объекта, дисфункциями, если способствуют его уничтожению, и нефункциональными следствиями, если не делают ни того, ни другого.
Следовало бы отметить также структурные объяснения. В них, как ясно из названия, исследователь апеллирует к структуре некоторого объекта, к его внутреннему строению.

К таким объяснительным операциям часто прибегают в анатомии, химии, структурной лингвистике.

Порой для того, чтобы объяснить некое свойство предмета, ссылаются на субстрат, «материал», из которого этот предмет состоит. Это — субстратное объяснение.

Вообще существует довольно много видов непричинных объяснений, и практика научно-исследовательской деятельности давно — а с течением времени все более наглядно — демонстрировала это. Более того, некоторые мыслители и даже целые исследовательские школы стали отдавать предпочтение какому-либо одному виду непричинного объяснения. Подобное предпочтение обычно оправдывалось с помощью специально создаваемой концепции.

Так, еще в первой половине нашего века возникли функционализм, структурализм, ряд научных школ, базировавшихся на различных теориях систем и т.д.

Таким образом, как бы ни были важны причинные объяснения, неправомерно сводить все типы научного объяснения лишь к причинным.

Такого рода сведение напоминает ситуацию с мальчуганом, который на вопрос «Почему колокола звонят на Пасху?» ответил: «Потому что их дергают за веревочки».

7. ОБЪЯСНЕНИЕ БЕЗ ПОНЯТИЯ, ПОНЯТИЕ БЕЗ ОБЪЯСНЕНИЯ

Теперь мы учли многообразие видов объяснения, реально выполняемых в науке, но не утрачено ли при этом их единство? В самом деле, что же позволяет называть одним и тем же именем — «объяснение» — столь различные действия? Вопрос в высшей степени важный, можно сказать, главный.

А ответ на него таков.

Непосредственно все эти действия выполняются благодаря экспланансу, одной частью которого являются положения о начальных условиях, а другую составляет научный закон (законы). И неважно, что в каком-то объяснении это — причинно-следственный закон, а в другом — структурный, в третьем — функциональный, а в четвертом — субстратный, в пятом...
— структурно-функциональный, а в шестом — субстратно-структурный и т.д. и т.п.

Важно, что он всегда входит в число объясняющих положений и в конечном счете именно благодаря ему и происходит объяснение. В объяснениях единичных объектов закон принимает на себя основную объяснятельную нагрузку, а в объяснениях законов — вообще всю.

Короче говоря, главный смысл объяснения состоит в подведении объясняемого объекта под какой-либо закон.

Эта идея (назовем ее «тезисом о законе») является самым ценным достижением всей той традиции в анализе объяснения, которую мы здесь рассматриваем.

Этот тезис был вполне четко сформулирован уже О.Контом:

«Объяснение явлений... есть... установление связей между различными отдельными явлениями и несколькими общими фактами». Термин «общий факт» О.Конт здесь употребляет как тождественный термину «научный закон».

Абстрактно говоря, на базе «тезиса о законе» могла возникнуть и даже, как кажется, не могла не возникнуть более широкая и более глубокая, чем «основная модель», концепция объяснения.

Однако, вопреки всем хвалебным оценкам, которые представители эмпиризма (кроме Маха) давали объяснению, его месту и роли в научном исследовании, в их представлениях оно оказывается в высшей степени скромной познавательной процедурой — всего лишь одним из способов унификации, «спрессовывания» знания. Подводя объясняемый объект под некоторый закон, мы просто констатируем, что этот объект таков же, как и все другие объекты того же типа, как бы вливаем малую толику жидкости — знания о нем — в сосуд, в котором уже немало точно такой же жидкости.

Если еще учесть, что концепция объяснения разрабатывалась в основном на материале естественных наук, то покажется вполне закономерным возникновение и вполне правдоподобным содержание той в известном смысле контрконцепции, которую обычно связывают с именем В.Дильтея.

Базируясь на теории понимания, разработанной Ф.Шлейермахером в рамках филологии, решительно выводя ее за эти рамки и придавая ей общенеметодологический характер, В. Дильтея создал некий эскиз концепции
понимания. В дальнейшем она дорабатывалась, детализировалась многими авторами.

Суть того, что в конечном счете получилось в одном из самых бескомпромиссных вариантов, можно кратко выразить так.

Необходимо строго разделять науки о природе и «науки о духе» (имеются в виду гуманитарные науки: история, филология, искусствоведение и т.д.).

— Главная познавательная функция наук о природе — объяснение. Она состоит в подведении единичного объекта под общий закон (понятие, теорию), в результате чего полностью уничтожается вся неповторимая индивидуальность этого объекта.

— Основная познавательная функция «наук о духе» — понимание. Здесь, напротив, стремятся постичь смысл изучаемого объекта именно в этой его индивидуальности.

Отсюда естественно следует, что науки этих двух видов принципиально различные.

Объяснение не дает и не может дать понимания объектов, и потому понимание достигается иными способами.

Конечно же, сторонники эмпиризма дали и постоянно продолжают давать для этого повод. Рассуждая об объяснении, они практически никогда не говорят о понимании, а если ненароком и употребят это слово, то — исключительно на уровне обычного языка, но никак не в качестве методологического термина, фиксирующего определенную функцию науки. Правда, это опять-таки кроме Э.Маха. Он специально говорил о проблеме понимания в связи с объяснением. И, как самый последовательный сторонник эмпиризма, говорил прямо, четко и, как бы даже нарочито заостряя все это, в чем его и его коллег по эмпиризму упрекали сторонники «концепции понимания».

Иногда в описаниях, рассуждает он, мы разлагаем «более сложные факты на возможно меньшее число возможно более простых фактов. Это мы называем объяснением. Эти простейшие факты, к которым мы сводим более сложные, по существу своему остаются всегда непонятными...». «Объясняют субъективно, когда думают, что смели непонятное к понятному... Сводят непонятное, непривычное к другим непонятным вещам, но привычным». Так, до И.Ньютона в механике все движения объясняли через непосредственное действие — давление и удар. Ньютоновское тяготение — действие на расстоянии — обесценило всех своей непривычно-
стъю. Было предпринято немало попыток объяснить его, и «в настоящее время явление тяготения не беспокоит больше ни одного человека: оно стало привычно-непонятным фактом».

8. И ВСЕ-ТАКИ ПОНИМАНИЕ!

Однако это противопоставление объяснения и понимания ошибочно. И прежде всего потому, что в корне неверно то истолкование сути научного закона и соответственно — объяснения, которое задано в эмпиризме. Научный закон (вообще теория) есть знание качественно иного типа, чем научный факт (вообще эмпирия). Если последний есть знание о мире (его фраг-

(160)

менте) на уровне его существования, то первый — знание о нем на уровне его необходимости, существенности.

Но это принципиальным образом меняет наше представление о том, в чем смысл объяснения.

В самом деле, что мы имеем в начале исследовательского процесса, когда заняты объяснением, скажем, единичного объекта?

— Мы имеем фактуальное положение (экспланандум), которое просто констатирует, что объект, подлежащий объяснению, существует.

А что нового мы узнаем в конце процесса?

— Благодаря тому, что нам удалось подвести этот объект под некий закон (или совокупность законов), мы узнаем, что объект необходим, т.е. не просто существует, но в силу таких-то и таких-то обстоятельств (а они указываются в положениях о начальных условиях) необходимо существу-

ет.

Любой единичный объект прямо или косвенно связан с бесчисленным количеством других объектов. Иначе говоря, он включен в бесконечное число различных систем и совокупностей объектов, каждая из которых представляет собой относительно замкнутое и автономное образование. Во многих из них он является случайным, т.е. может как существовать в такой системе, так и не существовать: с его устранением система (совокупность) не перестает существовать.

Однако всегда есть, по крайней мере, одна система объектов, в кото-

рой данный объект существует необходимо.

Иными словами, в такой системе реализованы необходимые и доста-

точные условия для него.
Задача объяснения в основном и заключается в том, чтобы указать такую систему.

Но что же тогда такое объяснение закона?

Зачем объяснять закон? Ведь он и так необходим.

Дело в том, что в начале исследовательского процесса используемое в экспланандуме положение, которое имеет форму

(161)

закона, вообще-то говоря, еще не является научным законом. Оно — лишь подобие закона, поскольку не обладает еще важнейшей содержательной характеристикой закона — необходимостью. И потому правы те, кто в таких случаях предпочитает термин «законоподобное положение», т.е. положение, по своей логической форме подобное закону. Ведь это еще только гипотеза о законе (речь идет здесь об эмпирических законах), и как не трудно догадаться, именно для того, чтобы превратить ее в полноценный научный закон, т.е. наделить этой недостающей содержательной характеристикой, ее и надо подвергнуть процедуре объяснения.

Тем самым объяснение показывает, что данный объект не есть какое-то совершенно случайное образование, для которого весь остальной мир абсолютно безразличен и которому этот мир отвечает точно таким же безразличием, но, напротив, необходимым образом укоренен в мире, точнее в определенной его части, в определенной системе других объектов, т.е. его существование значимо, имеет смысл для этой системы, равно, как и существование последней значимо, имеет смысл для него.

Иными словами, объяснение аргументированно демонстрирует нам осмысленность существования объекта, а значит позволяет понять его, и именно с этой целью оно и предпринимается.

Конечно, объяснение способствует также унификации знания, но это — лишь его побочный продукт.

А вот и другая сторона вопроса.

Вопреки «концепции понимания» объяснения выполняются не только в науках о природе, но и в науках об обществе (в экономике, социологии и т.д.) и даже в гуманитарных науках.

Собственно говоря, это последнее отрицали лишь экстремистски настроенные сторонники этой концепции. Сам же В. Дильтей, напротив, признавал это (хотя и отводил объяснениям в «науках о духе» очень скромную роль и ставил их в весьма подчиненное положение).
Современные его последователи в данном отношении вернулись на его позиции и даже стали проявлять повышенный интерес к проблеме объяснения в гуманитарных науках. Особенно это проявилось в широкой, длившейся уже несколько десятилетий дискуссии об объяснении в историографии.

Но главное, с чем никак не хотят согласиться нынешние последователи В. Дильтея, это — тезис об объяснении через закон.

К примеру, говоря об историографии, они категорически настаивают на том, что исследователь объясняет объект не подведением его под общий закон, а в ходе самого исторического повествования (нarrатива), которое тем самым кроме описательной выполняет также и объяснительную функцию. Ввиду его чрезвычайной сложности, многогранности и уникальности исторический объект-де только так и может быть объяснен.

На первый взгляд, это совершенно верно, ведь в историографических работах законы встречаются крайне редко, а объяснения, напротив, — на каждом шагу.

Но Гемпель раскрыл этот «секрет». Он показал, что в принципе историк строит свои объяснения так же, как, скажем, физик, с той только разницей, что первый обычно заимствует необходимые для этого законы из других областей знания, особенно из индивидуальной и социальной психологии, а эти законы зачастую настолько хорошо известны людям из повседневной жизни, что нет нужды воспроизводить их в тексте. Иначе говоря, они используются, но, как правило, имплицитно, т.е. подразумеваются.

Что же касается многогранности и уникальности, то они никак не могут быть объявлены сугубой спецификой объектов историографии (вообще гуманитарных наук), поскольку присущи всякому объекту, а говорить об их большей или меньшей «степени» бессмысленно. И если эти характеристики не препятствуют объяснению единичных объектов путем их подведения под закон в естественных и социальных науках, то почему они должны быть препятствием для наук гуманитарных?

Да, закон универсален и абстрактен, а объясняемый единичный объект уникален и конкретен. Однако научное познание умеет преодолевать этот барьер. И свидетельством тому является способность как устанавливать законы на базе изучения единичных объектов, так и применять первые для изучения вторых.
При объяснении этот барьер преодолевается благодаря как бы встречным движениям. С одной стороны, конкретный многогранный объект заменяется абстрактным, «одногранным». Это достигается путем определенного описания объекта — не с помощью его имени (имя как раз предполагает всю полноту, всю совокупность его граней, аспектов), а с помощью положения -экспланандума (в грамматическом плане — повествовательного предложения), которое выбирает лишь один из аспектов.

С другой стороны, в ходе объяснения осуществляется конкретизация закона. Ее средством являются положения о начальных условиях. Будучи фактуальными единичными положениями, они «привязывают» закон к специфической ситуации.

Разумеется, понимание, возникающее у нас в результате объяснения, это не совсем то понимание, о котором говорят В. Дильтей и его последователи.

Начать с того, что мир объектов, который они имеют в виду, очень специфичен и ограничен. Это — объекты, созданные человеком. Они могут быть самыми разнообразными — от вещей и поступков до живописных полотен, но чаще всего речь идет о текстах. Последнее не случайно, ибо Ф.Шлойермахер, а вслед за ним и В.Дильтей, работали на материале и в русле той традиции герменевтики (искусства истолкования религиозных, политических, исторических, художественных и прочих текстов), которая тянется к нам из глубокой древности.

Понять такой объект — значит постичь субъективный авторский замысел, ради реализации которого человек создавал данный объект, или короче — смысл последнего. Достигается подобное понимание посредством «вчувствования» (эмпатии) — преодоления познающим субъектом всех дистанций и барьеров (временных, пространственных, культурных и т.д.) и вхождением в духовный мир познаваемого субъекта. Здесь не нужны ни теории, ни законы, ни даже какие-либо общие понятия.

И что же? Кто же прав? Где же выход из положения? Да нигде. Потому что и положения-то никакого особенного нет. Такого рода понимание и таким способом обретаемое действительно существует. Больше того, оно совершенно необходимо в тех случаях, когда мы имеем дело с объектами, в которые смысл уже заложен другим человеком, и этот смысл необходимо установить. Однако оно отнюдь не является универсальным.

Понимание — это духовная акция, предельно широко распространенная
во всем мире человеческого духа.

Его назначение состоит в том, чтобы снять отчужденность понимаемых объектов, событий, явлений, создать у человека ощущение их естественности.

Конечно, в таких существенно разных сферах духовной деятельности, как познавательная, эстетическая, нравственная, понимание обретает весьма различные формы и достигается многообразными способами.

9. «ОСНОВНАЯ МОДЕЛЬ НАУЧНОГО ПРЕДВИДЕНИЯ»

Итак, в кратком и потому до некоторой степени огрубленном виде первую часть задач научного познания можно представить следующим образом: описать, чтобы объяснить и понять.

А для чего объяснить и понять? — напрашивается вопрос.

Тут прежде всего надо заметить, что каждая исследовательская функция ценна не только тем, что создает предпосылки для выполнения какой-то другой функции (других функций), но и сама по себе, т.е. обладает определенной самоценностью,

А теперь можно ответить на поставленный вопрос.

Описав и объяснив реальность, мы можем предвидеть (предсказать).

К. Гемпель и П.Оппенгейм проанализировали предвидение точно с такой же тщательностью, что и объяснение, хотя и посвятили первому из них всего несколько строк.

Странно? Ничуть. Вот эти строки: «Отметим здесь, что тот же самый формальный анализ... применяется к научному предсказанию так же, как и к объяснению. Различие между ними имеет прагматический характер. Если Е дано, т.е. если мы знаем, что явление, описываемое посредством Е, произошло, и впоследствии дается соответствующий ряд положений С(1), С(2),..., С(k); L(1), L(2),..., L(r), то мы говорим об объяснении данного явления. Если даны последние положения, а Е выводится до возникновения описываемого им явления, то мы говорим о предсказании. Можно сказать, следовательно, что объяснение не яв-
стике объяснения или предсказания, будет применимо к другому, даже если будет упомянуто только одно из них.

Именно эта потенциально предсказывающая сила и придает научному объяснению его значимость: только в той степени, в какой мы способны объяснить эмпирические факты, мы можем достигнуть высшей цели научного исследования, а именно не просто протоколировать явления нашего опыта, но понять их путем обоснования на них теоретических обобщений, которые дают нам возможность предвидеть новые события и контролировать, по крайней мере до некоторой степени, изменения в нашей среде».

Как видим, первое, что стремятся сделать К. Гемпель и П. Оппенгейм, это сопоставить структуры уже готовых, завершенных процедур объяснения и предвидения. Они утверждают, что эти структуры тождественны. И в самом деле, если преобразовать попперовский пример с нитью так, чтобы он выражал уже построенное предвидение, то мы получим следующее:

Всегда, если нить нагружена весом, превышающим предел ее прочности, то нить разрывается (З).

Данную нить нагружают (или собираются нагрузить) весом, превышающим предел ее прочности (С).

__

–

Данная нить разорвется (Е).

Или в более общем и опять-таки упрощенном виде:

Всегда, если С, то Е
С

__

Е

Здесь еще не существующее событие (е), представляемое положением (Е), предсказывается путем апелляции к уже существующему и наблюдаемому событию (с) (описано фактическим положением С) и к причинно-следственному закону, согласно которому события типа (с) всегда (с необходиомостью) вызывают к жизни события типа (е). И теперь, как и в случае с объяснением, ясно видны две части:
— с одной стороны, это — положение о будущем событии (E) (назовем его «прогнозом»);
— а с другой — положения, на базе которых (E) получено (C и Z) (обозначим их термином «основания предвидения»).

10. СТРУКТУРА ПРОЦЕССА ПРЕДВИДЕНИЯ

В приведенном рассуждении К.Гемпель и П.Оппенгейм коснулись вопроса о структурах самих исследовательских процессов в объяснении и предвидении. Причем сразу обнаружилось, что эти-то структуры весьма различны и в определенном смысле даже противоположны.

— В объяснении мы шли от изначально заданного заключения (E) к поиску таких посылок, из которых его можно было бы вывести дедуктивно.

— В предвидении же нам с самого начала даны посылки (основания предвидения) и нужно обычным логическим путем получить из них заключение (прогноз).

Иными словами, если в объяснении направление исследовательского процесса было противоположно направлению логического вывода, то в предвидении эти направления совпадают.

Однако в реальном исследовательском процессе предвидение, так же как и объяснение, вовсе не представляет чисто дедуктивную процедуру.

Прежде всего совсем не обязательно заданы сразу все основания предвидения. Чаще всего исследователю известны лишь начальные условия — некоторое конкретное (наличное или уже случившееся) событие (с). Его еще надо описать и получить положение о начальных условиях (C). Конечно, описание могло быть уже произведено кем-то другим, но это не всегда облегчает работу. Иногда напротив затрудняет ее. Ведь от того, как описано событие, каким языком, насколько точно и т.д. зависит дальнейший ход исследовательского процесса и прежде всего — следующий и самый ответственный шаг, а именно подбор нужного научного закона.

Здесь тоже приходится сначала строить схему искомого закона. Только теперь, учитывая, что изначально нам известно (C), она будет иметь вид: «Всегда, если С, то...». Далее опять-таки

приходится припоминать научные законы, удовлетворяющие этой схеме. И опять может оказаться, что удается припомнить несколько подобных законов.

И, наконец, может случиться, что ученому вообще не удается припомнить никакого закона. Тогда, как и в случае объяснения, его придется просто открыть.

11. ХАРАКТЕР ПРОГНОЗА

Первый вопрос, который возникает при столкновении с такой характеристикой прогноза, — а как быть с предвидением планеты Нептун У. Леверье и Дж. Адамсом, с предсказаниями месторождений полезных иско-паемых и со многими другими подобными им познавательными актами — подобными в том, что в них объект, фиксируемый прогнозом, уже существует в момент прогностического исследования и, стало быть, такой прогноз относится не к будущему, а к настоящему?

Как тут быть?

Запретить ученым использовать в такого рода ситуациях понятие предвидения?

Бесполезно. Использовали и будут это делать в впредь. Важнее выяснить, почему они так поступают. Думается, это происходит вследствие того, что ученому наиболее важной представляется собственно познавательная сторона дела, а именно то, что в этих случаях так же, как и в тех, о которых говорят сторонники «основной модели», наблюдение «вычисленного» объекта (эмпирическое подтверждение прогноза) есть вопрос будущего. По отношению к предсказанию не столь важно, существует ли объект, но по каким-то причинам в данный момент мы его наблюдать не можем, или он еще не возник.

Напрашивается замечание:

но тогда предвидением придется называть и третий способ выхода за пределы наблюдаемого мира — выход в мир прошлого.

Некоторые методологи науки так и поступают. Другие склонны говорить не о «предвидении прошлого», а о ретросказании и рассматривать
его как самостоятельную функцию науки. Хотя не исключено, что это — результат своеобразного деспотизма обыденного сознания, непривычности самого выражения «предвидение прошлого» для слуха.

Теперь следует обратить внимание на то, что предсказания в науке не ограничиваются лишь областью единичных явлений или событий.

Во многих науках нередко осуществляется предвидение законов. Правда, опознание этих предвидений нередко затрудняется благодаря тому, что их авторы склонны прибегать скорее к терминам типа «предвидение нового объекта (эффекта, свойства и т. п.)». Впрочем, не только авторы.

Так, обычно говорят, что из дираковской релятивистской теории движения электрона вытекало предвидение нового объекта — позитрона.

Это, конечно, верно. Однако такая форма высказывания прячет от нас важный аспект предсказанного. Речь ведь идет не о единичном объекте, а о бесконечном множестве однотипных объектов, причем не просто об их существовании, но о том, что каждый из них имеет такие-то и такие-то свойства, так-то и так-то ведет себя в определенных условиях (аннигилирует, рождается в паре с электроном). Фактически было осуществлено предсказание целого «пучка» законов, и потому выражение «предвидение нового объекта» является в высшей степени условным.

12. ОСНОВАНИЯ ПРЕДВИДЕНИЯ

Из предложенного нами расширенного (сравнительно с «основной моделью») понятия прогноза необходимо следуют, что и Понятие оснований предвидения должно быть расширено.

(169)

Как и в ситуации с объяснением, основаниям прогноза совсем не обязательно надо быть причинными, т.е. такими, в которых положение о начальных условиях фиксирует причину предсказываемого объекта, а закон является причинно-следственным.

Допустим, мы изучаем одну из тех систем, чьи структурные и субстратные законы нам известны. Пусть нам пока не удалось обнаружить некоторые элементы, необходимые присущие системам подобного рода. Используя названные законы, можно предсказать, что эти элементы все-таки есть и рано или поздно они будут эмпирически обнаружены.

По-видимому, в принципе в основаниях предвидения может использоваться научный закон любого типа.
Предвидение — это не прорыв из настоящего в будущее, а — выход за границы наблюдаемого мира, точнее сказать, за пределы изученного мира.

В объективном плане такой выход возможен благодаря тому, что мир сам по себе един (это для нас он делится на наблюдаемый и ненаблюдаемый, на изученный и неизученный), и базируется это единство на существовании законов. Когда мы говорим «Всегда, если A, то B», или ином «Все A суть B», мы под словом «все» подразумеваем «все, существующие где бы то ни было, существовавшие когда-либо и в принципе возможные». Поэтому, если нам известен закон, говорящий о связи объектов двух типов, и один из таких объектов мы обнаружили, то есть полное право построить прогноз относительно второго.

Однако мы предлагаем пойти еще дальше в расширении понятия оснований предвидения. Апеллируя к реальной практике научно-исследовательской деятельности, можно сказать, что иногда такие основания обходятся вовсе без законов.

Только что мы говорили о предвидениях законов и приводили пример, в котором закон (законы) предсказывался путем выведения из существующей теории. Однако существует и другой, в определенном отношении противоположный способ предвидения закона, а именно выведение его из множества однотипных эмпирических данных, которые и составляют основания этой процедуры. Результатом такого акта является законоподобное положение, обычно именуемое «эмпирическим законом» (выше о нем уже говорилось). Если при первом способе предвидения законов полученный прогноз надо подтвердить эмпирически, то при втором — обосновать теоретически, конкретнее — объяснить (о чем уже говорилось).

И, наконец, существуют интуитивные предвидения, для которых характерно прежде всего то, что основания в них вообще не формулируются явно. Больше того, самому исследователю порой представляется, будто здесь вовсе нет никаких оснований. Это, конечно, иллюзия. Уже то обстоятельство, что интуитивные предвидения осуществляются исследователем именно в той области, в которой он является специалистом или по крайней мере хорошо осведомлен, говорит о присутствии вполне реальных оснований в этих предвидениях.

* * *

kupov_v_i_i_dr_filosofiya_i_metodologiya_nauki
Говоря о функциях науки, не следует думать, будто они всегда выстроены в некую жесткую временную последовательность. Каждая функция обладает не только определенной самоценностью, но и некоторой автономией. С одной стороны, она ценна не только тем, что создает предпосылки для выполнения другой функции, но и сама по себе, с другой стороны, она сама базируется не только на результатах какой-то определенной функции.

Так, мы говорим, что объяснение базируется на описании, но это вполне верно лишь для объяснений единичных объектов, а в случае объяснения законов такой непосредственной связи уже нет. Понимание происходит из объяснения, но, как говорилось, существует понимание, не нуждающееся в таком источнике. Объяснение и понимание создают «стартовую площадку» для предвидения, однако, как мы только что видели, бывает и наоборот — предвидение задает работу объяснению.

Кроме того, надо иметь в виду, что наука — это не автономная система. Она включена в жизненный мир человека, в тот мир, где совершаются и многочисленные духовные акции, не подвластные науке. Так, решив задачу понять что-либо, человек обычно сразу же задается вопросом: приемлемо ли для него это понятое или нет. Тот же вопрос он обычно ставит и после получения прогноза на будущее, а затем — и следующий: ускорить реализацию этого прогноза или попытаться воспрепятствовать ей. Понятно, что все это в еще большей мере делает неоднозначной «функциональную цепь научного исследования».

IX. ОСОБЕННОСТИ ПРОЦЕССА НАУЧНОГО ПОЗНАНИЯ

1. В ПОИСКАХ ЛОГИКИ ОТКРЫТИЯ

Ф.БЭКОН

Развитие науки и, особенно, естествознания, как известно, тесно связано с эмпирическими методами исследования. Осознание их значения пришло в эпоху Возрождения и это было, быть может, самой значительной революцией в истории науки.

Одним из главных ее идеологов, несомненно, был Ф.Бэкон. Он резко выступил против книжной науки схоластов и их догматического мышления, провозгласив величие опыта и призывая учится читать книгу самой Природы.
«Истина — дочь Времени, а не Авторитета».

Этот замечательный афоризм Ф. Бэкона является одним из лучших выражений духа его эпохи.

Подобно всем великим реформаторам эпохи Возрождения Ф. Бэкон ставит перед собой огромную задачу — добиться того,

«чтобы наконец после стольких веков существования мира философия и науки более не были висящими в воздухе, а опирались на прочное основание разнородного и притом хорошо взвешенного опыта».

Подлинные знания о мире, по его мнению, можно получить только на основании наблюдений и экспериментов. Чисто логические рассуждения не могут привести к открытиям ни новых явлений, ни новых закономерностей. Особое значение в

познании имеет эксперимент. Чувства могут обманывать нас, в чем каждый может убедиться на собственном опыте. К тому же они и ограничены в своих возможностях постигать природу.

Иное дело эксперимент.

Его познавательные возможности огромны.

Как писал Ф. Бэкон, «природа вещей лучше обнаруживает себя в состоянии искусственной стесненности, чем в естественной свободе».

Однако способ рассуждений, основанный на силлогистике, не пригоден для постижения природы с помощью опыта.

«Матерь заблуждений и бедствие всех наук, — считал Ф. Бэкон, — есть тот способ открытия и проверки, когда сначала строятся самые общие основания, а потом к ним приспосабливаются и посредством их проверяются средние аксиомы».

Он вовсе не считал, что рассуждения от общего к частному порочны. Они вполне уместны в определенных ситуациях. Однако в постижении природы нужно опираться не на дедукцию, а на индуктивный метод.

«Индукцию, — писал Ф. Бэкон, — мы считаем той формой доказательства, которая считается с данными чувств, и настигает природу, и устремляется к практике, почти смешиваясь с нею».

Подлинный путь познания природы — постепенное движение от частностей ко все большим обобщениям. Он, конечно, не легок и требует немало терпения, зато прочен и надежен в полученных результатах.

Этот метод еще не был должным образом разработан. Но это не должно нас смущать.
«Разве можно не считаться с тем, что дальние плавания и путеше-
ствия, которые так участились в наше время, открыли и показали в приро-
де множество вещей, могущих пролить новый свет на философию. И ко-
нечно, было бы постыдно, если бы в то время, как границы материального
мира — земли, моря и звезд — так широко открылись и
раздвинулись, умственный мир продолжал оставаться в тесных пределах
того, что было открыто древними».

В индуктивном методе должны быть произведены радикальные пе-
ременны. Прежняя ее форма не пригодна для достижения поставленных це-
лей.

«Индукция, — считал Ф.Бэкон, — которая совершается путем про-
стого перечисления есть детская вещь: она дает шаткие заключения и под-
вергнута опасности со стороны противоречащих частностей, вынося реше-
ния большей частью на основании меньшего, чем следует, количества фак-
tов, и притом только тех, которые имеются налицо. Индукция же, которая
будет полезна для открытия и доказательства наук и искусств, должна раз-
делять природу посредством должных разграничений и исключений. И за-
тем после достаточного количества отрицательных суждений она должна
заключать о положительном».

Есть два пути в действиях людей, о которых говорили еще древние.
Первый путь, поначалу легкий, в конце становится непроходимым. Второй
начинается трудно, зато по мере прохождения по нему человеку становит-
ся все легче.

Ф. Бэкон считает, analogично дело обстоит с дедуктивным и инду-
ктивным методами познания:

«Если кто-нибудь отправляется от установленных положений, он
приходит под конец к сомнению, если же начинает с сомнений и терпели-
во справляется с ними, через какое-то время приходит к правильному вы-
воду».

Ф. Бэкон строит довольно изощренную схему индуктивного метода,
в которой учитываются случаи не только наличия изучаемого свойства, но
и его различных степеней, а также отсутствия этого свойства в ситуациях,
когда его проявление по тем или иным соображениям ожидалось.

Он уверен, что теперь наука получила метод открытия нового знания,
которым может владеть каждый. Теперь широко открылась дорога для
приумножения знания, так необходимого людям для улучшения их жизни.
Если раньше вырвать тайны у природы удавалось лишь избранным, часто
в результате случайных обстоятельств, то теперь появились совершенно новые, невиданные возможности для постижения действительности.

(174) «Наш же путь открытия наук таков, — пишет Ф. Бэкон, — что он немногое оставляет остроте и силе дарования, но почти уравнивает их. Подобно тому как для проведения прямой линии или описания совершенного круга много значат твердость, умелость и испытанность руки, если действовать только рукой, — мало или совсем ничего не значат, если пользоваться циркулем и линейкой. Так обстоит и с нашим методом».

Сколько еще неизвестного нам таит в себе природа, сколько полезных изобретений может осуществить еще человек — этого невозможно даже себе представить. Конечно с течением времени природа раскроет человеку свои тайны.

«Однако тем путем, о котором мы теперь говорим, все это можно представить и предвосхитить быстро, немедленно, тотчас».

Столь высоко оценивая свой вклад в развитие науки, Ф. Бэкон все же допускал возможность усовершенствования метода научного познания.

«Мы не утверждаем, однако, — замечал он, — что к этому ничего нельзя прибавить. Наоборот, рассматривая ум не только в его собственной способности, но и в его связи с вещами, мы должны установить, что искусство открытия может расти вместе с открытиями».

Р. Декарт

Однако доводы Ф. Бэкона, которыми он с таким пафосом обосновывал эффективность индуктивного метода познания, не показались убедительными другому выдающемуся представителю этой великой эпохи Р. Декарту.

Ставя перед собой ту же задачу, которую пытался разрешить и Ф. Бэкон — найти прочную основу научного познания, выработать его метод — он строит дедуктивную модель науки.

Р. Декарт был убежден в том, что наука по сути своей должна представлять достоверное знание. Однако то, что именовалось научным в его время, лишь в очень незначительной степени соответствовало этому качеству.

Как же можно было избавиться от засилья в науке случайных мнений, неопределенных суждений?
Как приумножить прочно обоснованное, подлинное знание?

Стремление ответить на эти вопросы привело Р.Декарта к разработке, связываемой с его именем концепции методологии научного познания.

Его рассуждения совершенно прозрачны и вполне последовательны.

«Смертными, — писал Р.Декарт, — владеет любопытство настолько слепое, что часто они ведут свои умы по неизведенным путям без всякого основания для надежды, но только для того, чтобы проверить, не лежит ли там то, чего они ищут; как если бы кто загорелся настолько безрассудным желанием найти сокровище, что беспрерывно бродил бы по дорогам, высымаивая, не найдет ли он случайно какое-нибудь сокровище, потерянное путником».

Вот положение, характерное для научных изысканий. Но разве можно на этом пути получить подлинные знания? Для отыскания истины, проникновения в тайны мироздания совершенно необходим последовательно применяемый метод.

«Ибо недостаточно просто иметь хороший ум, но главное — это хорошо применять его. Самая великая душа способна как к великим по- рокам, так и к великим добродетелям, и тот, кто идет очень медленно, может, всегда следуя прямым путем, продвинуться значительно дальше того, кто бежит и удаляется от этого пути».

Итак, необходим метод, применяя который можно было бы осуществлять рациональный поиск новых знаний и гарантировать их достоверность. Р.Декарт уверен в том, что такого рода метод может быть найден.

Как же он должен выглядеть? Каким требованиям он должен соответствовать?

«Под методом же я разумею достоверные и легкие правила, — писал Р.Декарт, — строго соблюдающие которые, человек никогда не примет ничего ложного за истинное и, не затрачивая напрасно никакого усилия ума, но постоянно шаг за шагом приумножая знание, придет к истинному познанию всего того, что он будет способен познать».

Как можно найти такой метод?

А для этого нужно прежде всего обратиться к самой науке и посмотреть, где ей удается успешно решать эту задачу. Очевидно, что этим требованиям отвечают только арифметика и геометрия, только они «остаются не тронутыми никаким пороком лжи и недостоверности».
Этим наукам удается добиться таких результатов потому, что они применяют единственно правильный, надежный метод познания.

Все дело в том, что они опираются на интуицию и дедукцию.

Интуиция дает нам возможность усмотреть в реальности не вызывающие никаких сомнений простые истины.

«Таким образом каждый может усмотреть умом, что он существует, что он мыслит, что треугольник ограничен только тремя линиями, а шар — единственной поверхностью и тому подобные вещи, которые гораздо более многочисленны, чем замечает большинство людей, так как они считаю недостойным обращать ум на столь легкие вещи».

Применение же дедукции позволяет вывести из очевидных истин знания, которые уже не могут с непосредственной ясностью постигаться нашим умом, однако представляющие в силу самого способа их получения вполне обоснованные и тем самым достоверные. Дедукция, проводящаяся по строгим правилам, не может приводить к заблуждениям.

Р. Декарт убежден в том, что таким же образом можно получать знание в любой области науки.

«Эти два пути являются самыми верными путями к знанию, и ум не должен допускать их больше — все другие надо отвергать как подозрительные и ведущие к заблуждениям».

Следуя ими, мы можем быть уверены, что придем к познанию вещей без заблуждений.

«Те длинные цепи выводов, сплошь простых и легких, которыми геометры обычно пользуются, чтобы дойти до своих наиболее трудных доказательств, дали мне возможность представить себе, что и все вещи, которые могут стать для людей предметом знания, находятся между собой в такой же последовательности. Таким образом, если воздерживаться от того, чтобы принимать за истинное что-либо, что таковым не является, и всегда соблюдать порядок, в каком следует выводить одно из другого, то не может существовать истина ни столь отдаленных, чтобы они были недостигимы, ни столь сокровенных, чтобы нельзя было их раскрыть».

Так обосновываются Р. Декартом исходные основания его учения о методе научного познания. Они дают ему возможность сформулировать уже универсальные правила для руководства ума в его поисках нового знания.

И вот, наконец, сами эти знаменитые правила.
Осознание масштабов свершенного, спокойствие и уверенность чувствуются в этих простых и ясных предписаниях.

«И подобно тому как обилие законов нередко дает повод к оправданию пороков и государство лучше управляется, если законов немного, но они строго соблюдаются, так и вместо большого числа правил, составляющих логику, я заключил, что было бы достаточно четырех следующих, лишь бы только я принял твердое решение постоянно соблюдать их без единого отступления.

Первое — никогда не принимать за истинное ничего, что я не признал бы таким с очевидностью, то есть тщательно избегать поспешности и предубеждения и включать в свои суждения только то, что представляется моему уму столь ясно и отчетливо, что никоим образом не сможет дать повод к сомнению.

Второе — делить каждую из рассматриваемых мною трудностей на столько частей, сколько потребуется, чтобы лучше их разрешить.

Третье — располагать свои мысли в определенном порядке, начиная с предметов простейших и легко познаваемых, и восходить мало-помалу, как по ступеням, до познания наиболее слож-

ных, допуская существование порядка даже среди тех, которые в естественном ходе вещей не предшествуют друг другу.

И последнее — делать всюду перечни настолько полные и обзоры столь всеохватывающие, чтобы быть уверенным, что ничего не пропущено».

Что может быть значительней в науке, чем решение этой проблемы?

Р. Декарт вполне осознает ее масштабы. Предложенная им система правил, как он считал, откроет невиданные возможности для развития науки.

Как писал великий мыслитель, и если говорить откровенно, я убежден, что она превосходит любое другое знание, переданное нам людьми, так как она служит источником всех других знаний».

И вместе с тем ведь это был Декарт, который удивительно сочетал в себе кристальную ясность ума, убежденность в возможности достижения истины с замечательной способностью не преклоняться ни перед чьим мнением и во всем сомневаться. И поэтому нас не должно удивлять и такое его высказывание:
«Впрочем, возможно, что я ошибаюсь, и то, что принимаю за золото и алмаз, не более чем крупицы меди и стекла».

2. КРИТИЧЕСКИЕ АРГУМЕНТЫ

Индуктивистская модель научного познания была очень популярна в истории методологии науки. Когда ученые говорили, что нельзя познать действительность, не наблюдая, не экспериментируя, когда они воевали против всяческих умозрений по отношению к действительности, когда они высказывались в том стиле, что факты — это воздух ученого, в принципе они опирались на те идеи, которые выдвинул еще Ф.Бэкон довольно давно и в довольно систематической форме.

Кажется вполне естественным, что научное познание действительно осуществляется только тогда, когда мы имеем возможность ее наблюдать, экспериментировать с нею, и в общем-то даже современному здравому смыслу соответствует такое предstawление о научном познании. В этих представлениях, несомненно, есть определенные основания.

Однако такого рода модель в свете современных представлений оказывается совершенно несостоятельной, и ее несостоятельность обосновывается сейчас совершенно неоспоримыми аргументами, которые высказывались в разное время и в общем-то были систематизированы уже в XX в. Б.Рассел в свое время так выразил свое недоверие к индуктивной модели научного познания. Он говорил, что верить в индуктивные обобщения — это значит уподобляться курице, которая на каждый зов хозяйки выбегает ей навстречу в надежде на то, что ее покормят зерном. Однако рано или поздно дело оканчивается тем, что хозяйка сворачивает ей шею.

Но если говорить всерьез, то против универсальности индуктивных обобщений и их трактовки как фундамента для всего научного познания, могут быть выдвинуты прежде всего следующие аргументы:

— Индукция не может приводить к универсальным суждениям, в которых выражаются закономерности.

Конечно, в опыте можно зафиксировать какую-либо повторяемость. Однако никакой опыт не может гарантировать, что она сохранится за пределами непосредственно наблюдаемого.

— Индуктивные обобщения находятся на уровне непосредственно эмпирических обобщений, и они не могут осуществить скачок от эмпирии к теории.
Обосновывая это утверждение, трудно представить себе лучший способ аргументации, чем апелляция к авторитету великого Эйнштейна.

«В настоящее время известно, что наука не может вырасти на основе одного только опыта и что при построении науки мы вынуждены прибегать к свободно создаваемым понятиям, пригодность которых можно a posteriori проверить опытным путем. Эти обстоятельства ускользали от предыдущих поколений, которым казалось, что теорию можно построить чисто индуктивно, не прибегая к свободному, творческому созданию понятий. Чем примитивнее состояние науки, тем легче исследователю сохранить иллюзию по поводу того, что он будто бы является эмпириском. Еще в XIX в. многие верили, что ньютоновский принцип — «hypotheses non fingo» — должен служить фундаментом всякой здравой естественной науки.

В последнее время перестройка всей системы теоретической физики в целом привела к тому, что признание умозрительного характера науки стало всеобщим достоянием».

— Любые эмпирические исследования предполагают наличие определенных теоретических установок, без которых они просто неосуществимы.

Дело в том, что никакого чистого опыта, т.е. такого опыта, который не определялся бы какими-то теоретическими представлениями, просто не существует. Без определенной теоретической установки не может возникнуть даже идея эксперимента.

Вот что пишет по этому поводу К.Поппер:

«Представление о том, что наука развивается от наблюдений к теории, все еще довольно широко распространено. Однако "вера в то, что мы можем начать научное исследование, не имея чего-то похожего на теорию, является абсурдной". Двадцать пять лет тому назад я пытался внушить эту мысль группе студентов-физиков в Вене, начав свою лекцию следующими словами: "Возьмите карандаш и бумагу, внимательно наблюдайте и описывайте ваши наблюдения!" Они спросили, конечно, что именно они должны наблюдать. Ясно, что простая инструкция: "Наблюдайте!" является абсурдной... Наблюдение всегда носит избирательный характер. Нужно избрать объект, определенную задачу, иметь некоторый интерес, точку зрения, проблему. А описание наблюдения предполагает использование дескриптивного языка со словами, фиксирующими соответствующие свой-
ства; такой язык предполагает сходство и классификацию, которые в свою очередь предполагают интерес, точку зрения, проблему».

Замечательное описание эмпиризма, который лежит в основе индуктивной модели научного познания, дает Р.Якобсон.

Он приводит описание положения, в которое попал герой повести русского писателя В.Одоевского, наделенный магом способностью все видеть и все слышать. «Все в природе разлагалось пред ним, но и ничто не соединялось в душе его», и звуки речи несчастный воспринимал как лавину артикуляторных движений и механических колебаний, лишенных смысла и цели».

«Нельзя было более точно предвидеть, — замечает Р.Якобсон, — и более проникновенно описать торжество слепого эмпиризма!»

— Известно, что в истории науки целый ряд фундаментальных теоретических результатов был получен без непосредственного обращения к эмпирическому материалу.

В качестве классического примера здесь следует отметить создание общей теории относительности. Впрочем, к ним можно отнести и создание частной теории относительности.

Никаких особых фактов, которые могли бы послужить А. Эйнштейну для создания общей теории относительности не существовало. И по поводу создания частной теории относительности можно сейчас сказать то же самое. Опыт А.Майкельсона, на который обычно ссылаются, когда пытаются истолковать создание частной теории относительности как результат апелляции к каким-то опытным фактам, как свидетельствует сам А.Эйнштейн, по крайней мере, не имел для него существенного значения. Частная теория относительности была создана в результате рассмотрения теоретической проблемы, связанной с истолкованием природы пространства-времени и места пространственно-временных представлений в структуре научного знания, в физических теориях.

И уж, конечно, эти теории были созданы не в результате индуктивных обобщений.

Модель научного познания, разработанная Р.Декартом, оказывается также не выдерживающей критики.

Конечно, в современном теоретическом мышлении огромна роль дедукции. Несомненно и то, что в каком-то смысле интуитивно ученый усматривает основные принципы теории.
— Однако эти принципы далеки от декартовской очевидности.

Как известно, Н.Лобачевский построил неевклидову геометрию, заменив пятый постулат Евклида, согласно которому через точку, лежащую вне данной прямой можно провести прямую, параллельную данной и при том только одну. В геометрии Лобачевского через точку, лежащую вне данной прямой, можно провести по крайней мере две прямые, параллельные данной. Такое утверждение ни в каком смысле не является очевидным.

Аналогично дело обстоит с основаниями квантовой механики, теории относительности, современной космологической теории Большого взрыва.

— Модель Р.Декарта не отражает роли эмпирических исследований в научном познании.

Теперь обратим внимание на их общие недостатки, которые присущи рассмотренным моделям научного познания.

— Они предполагают, что в науке не может содержаться вероятностное знание.

Развитие науки убедительно продемонстрировало огромную эффективность использования в науке вероятностных представлений. Современные эмпирические исследования просто немыслимы без статистической обработки. Практически во всех областях науки строятся вероятностные модели изучаемых явлений. Подавляющее большинство современных научных теорий являются вероятностно-статистическими. Их значимость настолько велика, что сегодня говорят о вероятностной картине мира. Квантовая механика, генетика, теория эволюции, теория информации являются классическими образцами такого рода теорий.

— Оба мыслителя исходят из того, что наука не может содержать в себе гипотетического знания.

Г. Лейбниц, в отличие от Ф. Бекона и Р.Декарта, считал необходимым обратить особое внимание на гипотетическое, вероятное знание.

«Мнение, основанное на вероятности, — писал он, — может быть так же заслуживает названия знания; в противном случае должно отпасть почти все историческое знание и многое другое. Но не вдаваясь в спор о словах, я думаю, что иссле-

(183)
также как и Г. Галилей, обращал внимание на важную роль гипотез в научном познании.

Сегодня эти идеи имеют фундаментальное значение.

— Они строят свои модели, претендуя на построение логики открытия.

Попытки построения различного рода логик открытия прекратились еще в прошлом веке. Была понята полная их несостоятельность. Это стало очевидным в результате как психологических, так и философских исследований творческой деятельности человека.

Приговор был такой: никакой логики научного открытия в принципе не может быть. Ни в каком смысле алгоритма здесь не существует.

3. ОТ ЛОГИКИ ОТКРЫТИЯ К ЛОГИКЕ ПОДТВЕРЖДЕНИЯ

В первой половине ХХ в. одной из наиболее популярных становится гипотетико-дедуктивная модель научного познания.

Создание логики открытия предполагало, что сам процесс получения нового знания гарантирует его истинность. Но если не существует никаких методов открытия, то очевидно, что в науку проникают утверждения, носящие гипотетический характер. Они, конечно, требуют испытания на не-противоречивость, а главное на соответствие наблюдаемым и опытным данным. Свободное творчество в процессе выдвижения различного рода обобщений, таким образом, имеет вполне естественное ограничение.

Складывалось следующее представление о процессе научного познания.

— Ученый выдвигает гипотетическое обобщение, из него дедуктивно выводятся различного рода следствия, которые затем сопоставляются с эмпирическими данными.

— Те гипотезы, которые противоречат опытным данным, отбрасываются, а подтвержденные утверждаются в качестве научного знания.

— Эмпирическое содержание любого обобщения и определяет его подлинный смысл.

— Теоретическое утверждение, чтобы быть научным, обязательно должно иметь возможность соотноситься с опытом и подтверждаться им.

Однако, когда мы говорим, что истинность того или иного утверждения известна из опыта, мы фактически ссылаемся на принцип индукции,
согласно которому универсальные высказывания основываются на индуктивных выводах.

«Этот принцип, — утверждает Рейхенбах, — определяет истинность научных теорий. Устранение его из науки означало бы не более и не менее как лишение науки ее способности различать истинность и ложность ее теорий. Без него наука, очевидно, более не имела бы права говорить об отличии своих теорий от причудливых и произвольных созданий поэтического ума».

Поэтому основной задачей методологии науки становится разработка индуктивной логики.

Однако никакими эмпирическими данными, как отмечал Р.Карнап, невозможно установить истинность универсального обобщающего суждения. Сколько бы раз ни испытывался какой-либо закон, не существует гарантий, что не появятся новые наблюдения, которые будут ему противоречить.

«Никогда нельзя достичь полной верификации закона, — пишет Р.Карнап. — Фактически мы вообще не должны говорить о «верификации», — если под этим словом мы понимаем окончательное установление истинности, — а только о подтверждении».

Итак, теоретические построения науки по своей сути могут быть лишь гипотетическими. Они не в силах стать истинными, а могут претендовать лишь на правдоподобие. Поскольку оно выявляется в сопоставлении теоретических гипотез с эмпирическими данными, процедура подтверждения становится в научном познании чрезвычайно важной. С другой стороны, очевидно, что индуктивная логика, устанавливающая их связь, может быть лишь вероятностной.

Как считал Р.Карнап, именно стадия подтверждения, в отличие от стадии открытия, выдвижения гипотезы,

должна и может находиться под рациональным контролем.

«Я согласен, — замечает Р.Карнап, — что не может быть созданна индуктивная машина, если цель машины состоит в изобретении новых теорий. Я верю, однако, что может быть построена индуктивная машина со значительно более скромной целью. Если даны некоторые наблюдения E и гипотеза h (в форме, скажем, предсказания или даже множества законов), тогда я уверен, что во многих случаях путем чисто механической процедуры возможно определить логическую вероятность, или степень подтверждения h на основе E».
Если бы удалось решить эту задачу, тогда вместо того, чтобы говорить, что один закон обоснован хорошо, а другой — слабо, мы бы имели точные, количественные оценки степени их подтверждения. Конечно, их знание не является еще достаточным для принятия решения, связанного с выбором одной из конкурирующих гипотез. Однако, как считал Р. Карнап, при прочих равных условиях эти оценки имели бы важное значение для ученых.

Реализация этой программы предполагала прежде всего построение вероятностной логики, применимой к реальным высказываниям науки. Однако дело до этого не дошло.

И хотя Р. Карнапу удалось построить вероятностную логику для простейших языков, что уже представляло значительный вклад в науку, его программа не привела к достижению цели.

Он испытал еще один путь в попытках понять процесс научного познания и своим упорством и настойчивостью продемонстрировал его бесперспективность. К. Поппер выразил по существу мнение научного сообщества, когда писал:

«Я не думаю, что имеется такая вещь, как “индуктивная логика” в карнаповском или в любом ином смысле».

Дело здесь не только в том, что такого рода логику трудно построить. Как показали дальнейшие исследования, степень подтверждения гипотезы в процессе научного познания не представляет столь значимой, как это казалось Р. Карнапу.

«Наука похожа на детективный рассказ, — писал Ф. Франк. — Все факты подтверждают определенную гипотезу, но правильной оказывается в конце концов совершенно другая гипотеза».

4. ФАЛЬСИФИЦИРУЕМОСТЬ КАК КРИТЕРИЙ НАУЧНОСТИ

К. Поппер обратил внимание на то, что процедуры подтверждения и опровержения имеют совершенно различный познавательный статус.

Никакое количество наблюдаемых белых лебедей не является достаточным основанием для установления истиности утверждения «все лебеди белые». Вместе с тем достаточно увидеть одного лебедя, чтобы узнать это утверждение ложным. Эта асимметрия, как показывает К. Поппер, имеет решающее значение для понимания процесса научного познания.
Основные свои идеи, связанные с пониманием статуса опровержения в оценке научных гипотез, он изложил следующим образом:

«(1) Легко получить подтверждения, или верификации, почти для каждой теории, если мы ищем подтверждений.

(2) Подтверждения должны приниматься во внимание только в том случае, если они являются результатом рискованных предсказаний, то есть когда мы, не будучи осведомленными о некоторой теории, ожидали бы события, несовместимого с этой теорией, — события опровергающего данную теорию.

(3) Каждая «хорошая» научная теория является некоторым запрещением: она запрещает появление определенных событий. Чем больше теория запрещает, тем она лучше.

(4) Теория, не опровергаемая никаким мыслимым событием, является ненаучной. Неопровержимость представляет собой не достоинство теории (как часто думают), а ее порок.

(5) Каждая настоящая проверка теории является попыткой ее фальсифицировать, то есть опровергнуть. Проверяемость есть фальсифицируемость; при этом существуют степени проверяемости: одни теории более проверяемы, в большей степени опровержимы, чем другие; такие теории подвержены, так сказать, большему риску.

(6) Подтверждающее свидетельство не должно приниматься в расчет за исключением тех случаев, когда оно является результатом подлинной проверки теории. Это означает, что его следует понимать как результат серьезной, но безуспешной попытки фальсифицировать теорию. (Теперь в таких случаях я говорю о «подкрепляющем свидетельстве».)

(7) Некоторые подлинно проверяемые теории после того, как обнаружена их ложность, все-таки поддерживаются их сторонниками, например, с помощью введения таких вспомогательных допущений ad hoc или с помощью такой переинтерпретации ad hoc теории, которые избавляют ее от опровержения. Такая процедура всегда возможна, но она спасает теорию от опровержения только ценой уничтожения или по крайней мере уменьшения ее научного статуса. (Позднее такую спасательную операцию я назвал «конвенционалистской стратегией» или «конвенционалистской уловкой».)

Все сказанное можно суммировать в следующем утверждении: критерием научного статуса теории является ее фальсифицируемость, опровержимость, или проверяемость».
Позиция К.Поппера достаточно ясна. Она не требует комментариев. Здесь важно лишь обратить внимание на то, что в его модели все знание оказывается гипотетическим.

Научное познание, согласно К.Попперу, направлено на поиск истины. Но она не достижима не только на уровне теории, но даже и в эмпирическом знании просто в силу его теоретической нагруженности.

«Наука не покойтся на твердом фундаменте фактов, — писал К.Поппер. — Жесткая структура ее теорий поднимается, так сказать, над болотом. Она подобна зданию, воздвигнутому на сваях. Эти сваи забиваются в болото, но не достигают никакого естественного или «данного» основания. Если же мы перестаем забивать сваи дальше, то вовсе не потому, что достигли твердой почвы. Мы останавливаемся просто тогда, когда убеждаемся, что сваи достаточно прочны и способны, по крайней мере некоторое время, выдержать тяжесть нашей структуры».

И еще одно замечание. В этой своей критике индуктивизма

К. Поппер остается последовательным сторонником эмпиризма. И признание теории, и отказ от нее всецело определяются опытом.

«До тех пор пока теория выдерживает самые строгие проверки, какие мы можем предложить, — пишет К.Поппер, — она признается; если она их не выдерживает, она отвергается. Однако теория ни в каком смысле не выводится из эмпирических свидетельств. Не существует ни психологической, ни логической индукции. Из эмпирических свидетельств может быть выведена только ложность теории, и этот вывод является чисто дедуктивным».

5. КОНЦЕПЦИЯ «ТРЕТЬЕГО МИРА» К. ПОППЕРА

Большое влияние на современную методологию науки, оказали те идеи, которые были выдвинуты К.Поппером в рамках концепции «третьего мира».

По мнению К. Поппера, важно различать три мира:
— первый мир — реальность, существующая объективно;
— второй мир — состояние сознания и его активность;
— третий мир — «мир объективного содержания мышления, прежде всего, содержания научных идей, поэтических мыслей и произведений искусства».
Философы прошлого уделяли большое внимание знанию в субъективном смысле, т.е. второму миру и рассмотрению проблем соотношения второго и первого миров, в то же время мало изучали особенности жизни науки в третьем мире. А между тем для понимания сущности науки и закономерностей ее развития, Да и процесса познания вообще, по мнению К. Поппера, эта область исследований имеет важнейшее значение.

«Немного существует вещей в современной проблемной ситуации в философии, — пишет К. Поппер, — которые так же важны, как знание различия между двумя категориями проблем: проблемами производства, с одной стороны, и проблемами, связанными с произведенными структурами самими по себе, — с другой».

Если применить это различение к науке, то мы должны выделить проблемы,
— связанные с деятельностью людей производящих знания,
— относящиеся к особенностям продуктов познавательного процесса.

По мнению К. Поппера, изучение продуктов научного познания является более важным, чем исследование самого процесса научного исследования.

Более того, как он считает, даже о самом процессе получения научных знаний мы можем узнать больше, чем при непосредственном его изучении. Ведь и о психологии человека мы судим во многом по результатам его деятельности. Эта ситуация вполне естественна. Во всех науках причины обнаруживают по их следствиям.

Что же представляет собой этот третий мир?

«Обитатели моего третьего мира, — пишет К. Поппер, — являются прежде всего теоретические системы, другими важными его жителями являются проблемы и проблемные ситуации. Однако его наиболее важными обитателями... являются критические рассуждения и то, что может быть названо... состоянием дискуссий или состоянием критических споров; конечно, сюда относится и содержание журналов, книг и библиотек».

Третий мир представляет собой продукт человеческой деятельности. Он постоянно растет. Вместе с тем очень важно обратить внимание на его значительную автономность.
«Мир языка, предположений, теорий и рассуждений — короче, универсум объективного знания, является одним из самых важных созданных человеком универсумов».

Представим себе, пишет К. Поппер, что уничтожены все продукты человеческой деятельности и память о них в сознании людей, однако остались библиотеки и сохранилась наша способность воспринимать содержание книг, хранящихся в них. В этом случае цивилизация будет сравнительно быстро восстановлена.

Но если будут уничтожены и библиотеки, то для возрождения цивилизации пройдут тысячелетия, т.е. надо будет начинать все сначала: «если бы кто-либо должен был начать с того места, с которого начал Адам, он не сумел бы пойти дальше Адама».

Эти мысленные эксперименты показывают не только важность третьего мира, но и его автономность.

Конечно третий мир создается человеком. Однако он во многом не ведает сам, что творит, а результаты его деятельности начинают вести свою собственную жизнь, о которой человек и не задумывался.

«С нашими теориями, — пишет К. Поппер, — происходит то же, что и с нашими детьми: они имеют склонность становиться в значительной степени независимыми от своих родителей. С нашими теориями может случиться то же, что и с нашими детьми: мы можем приобрести от них большее количество знания, чем первоначально вложили в них».

Конечно, натуральный ряд чисел создан человеком, однако затем он сам становится объектом изучения, которое порождает необозримое количество знаний о числах. То же можно сказать о любой научной теории. Объекты третьего мира — это не только их актуальная данность, но и потенция их развития.

Естественно, что с каждым новым открытием в третьем мире появляются и совершенно новые, прежде не содержащиеся в нем даже потенциально, проблемы и соответственно возможности их решения.

«И каждый такой шаг, — замечает К. Поппер, — будет создавать новые непреднамеренные факты, новые неожиданные проблемы, а часто также и новые опровержения».

Третий мир не мог бы возникнуть без языка науки, ведь это лингвистический мир.
Двумя самыми важными функциями языка являются дескриптивная (описательная) и аргументативная. Вторая из них предполагает наличие первой. Аргументы, конечно, всегда имеют дело с некоторыми описаниями, которые критикуются с точки зрения их правдоподобия и истинности.

Аргументативная функция языка появилась в связи с развитием рациональности в истории культуры, что и привело в конечном счете к возникновению науки. Учитывая это обстоятельство, можно, по-видимому, сказать, что аргументативная функция представляет собой наиболее мощное из всех средств приспособления к реальности, которое когда-либо существовало в органической эволюции.

Развитие общества приводит к тому, что возможности и значение дескриптивной и аргументативных функций постоянно возрастают. Вместо того, чтобы все больше развивать свою память, человек обзаводится различного рода приспособлениями. Он изобретает бумагу, создает печатные станки и книги, пишущую машинку и, наконец, современную вычислительную технику, которые выводят его возможности в совершенно новое измерение.

Критицизм является важнейшим источником роста третьего мира. Любое исследование начинается с проблемы. Для ее решения ученый развивает теорию, которая критически оценивается через сопоставление с конкурирующими теориями и эмпирическими данными. В результате этой оценки возникает новая проблема.

«В большинстве своем и в самых интересных случаях теория терпит неудачу, и таким образом возникают новые проблемы. А достигнутый прогресс может быть оценен интеллектуальным интервалом, между первоначальной проблемой и новой проблемой, которая возникает из крушения теории»

Этот цикл может быть описан следующей схемой:

\(P \rightarrow TT \rightarrow EE \rightarrow P, \)

где \(P \) — исходная проблема, \(TT \) — теория, претендующая на решение проблемы, \(EE \) — оценка теории, ее критика и устранение ошибок, \(P \) — новая проблема.

Таким образом, процесс роста третьего мира «состоит в критике, обладающей творческим воображением».
Мы выходим в ней за пределы нашего опыта. Критически относясь к очевидному или освещенному\(^1\) мнением авторитетов, все подвергая сомнению, опробируя\(^2\) самые невероятные возможности, ученый преодолевает границы доступной ему прежде реальности.

«Вот каким образом, — пишет К.Поппер, — мы поднимаем себя за волосы из трясины нашего незнания, вот как мы бросаем веревку в воздух и затем карабкаемся по ней».

6. НАУЧНЫЕ РЕВОЛЮЦИИ, ПАРАДИГМЫ И НАУЧНЫЕ СООБЩЕСТВА

Идеи К. Поппера во многом содействовали тому, что методология науки стала все ближе смыкаться с историей науки.

Если вслед за К.Поппером считать, что главный вклад в методологию может дать анализ роста знания, то их тесное взаимодействие становится неизбежным. Прекрасное воплощение этого направления исследований продемонстрировал в своей работе о научных революциях Т. Кун.

Он обращает внимание на то, что в истории любой области науки можно выделить периоды «нормальной науки» и научные революции.

Под термином «нормальная наука» Т. Кун понимает исследования, которые осуществляются научным сообществом, опираясь на крупные научные достижения, которые в течение некоторого времени признаются им как основа его дальнейшей деятельности. В качестве примера здесь можно сослаться на работы Коперника, Ньютона, Эйнштейна, Лавуазье, Дарвина. Они определяют, как отмечает Т.Кун, так называемые парадигмы научной деятельности.

«Под парадигмами, — пишет Т.Кун, — я подразумеваю признанные всеми научные достижения, которые в течение определенного времени дают модель постановки проблем и их решений научному сообществу».

Объективно задача «нормальной науки» состоит в том, чтобы выявить весь познавательный потенциал, который заложен в Новых идеях, определяющих видение реальности и способов ее постижения.

\(^1\) Правильно: «освященному». Хороши будут «магистры и аспиранты», испеченные на этом Учебнике — Яр.

\(^2\) Нет такого глагола в русском языке. Есть «апробировать», но значение не подходит. Есть «опробовать», но глагол корявый. — Яр.
«Концентрируя внимание на небольшой области относительно эзотерических проблем, — отмечает Т.Кун, — парадигма заставляет ученых исследовать некоторый фрагмент природы так детально и глубоко, как это было бы немыслимо при других обстоятельствах».

Здесь необходимы не только упорство, но и изобретательность и талант исследователя. Ведь перед ним постоянно возникают новые проблемы, которые раньше никто не мог даже и вообразить. Однако они всегда таковы, что не выходят за границы, определяемые парадигмой. Поэтому Т.Кун называет их задачами-головоломками.

Следует иметь в виду, что ни одна теория не в состоянии решить в данный момент всех проблем, которые перед ней стоят. Поэтому «нормальная наука», конечно, существует в условиях определенной интеллектуальной напряженности. Однако ни у кого не вызывает сомнения, что все возникающие трудности будут преодолены.

Однако рано или поздно в научном познании возникают кризисные явления, связанные с появлением трудностей в развитии «нормальной науки».

Это связано прежде всего с появлением новых данных, которые в рамках принятой парадигмы выглядят аномалиями. В этих условиях ученые будут стараться модифицировать принятую теорию, дать такую интерпретацию новому явлению, которая бы не противоречила исходным принципам.

Возрастание числа таких аномалий создает новую атмосферу в науке. Появляются подозрения в ее принципиальной неэффективности. Круг аномальных явлений расширяется за счет того, что теперь видятся старые трудности теории, на которые раньше закрывались глаза. Что прощалось и даже не замечалось у парадигмы в пору ее расцвета, теперь становится предметом пристального внимания.

В этих условиях ученые начинают по-разному относиться к парадигме, и соответственно меняется характер их исследований.

«Увеличение конкурирующих вариантов, готовность опробовать что-либо еще, выражение явного недовольства, обращение за помощью к философии и обсуждение фундаментальных положений — все это симптомы перехода от нормального исследования к экстраординарному».

Таким образом, возникает кризисная ситуация.
Она разрешается в конце концов тем, что возникает новая парадигма. Тем самым в науке происходит подлинная революция. И вновь складываются условия для функционирования «нормальной науки».

Важно обратить внимание на то, что переход к новой парадигме представляет собой некоторый социальный процесс.

Т.Кун пишет:

«Решение отказаться от парадигмы всегда одновременно есть решение принять другую парадигму, а приговор, приводящий к такому решению, включает как сопоставление обеих парадигм с природой, так и сравнение парадигм друг с другом».

Процесс такого сопоставления занимает нередко значительное время. Он представляет собой не только мучительные попытки сторонников старой парадигмы справиться с возникающими трудностями и полные вдохновения и энергии стремления новаторов развить и укрепить основание новых взглядов. Это и борьба убеждений, осуществление и крушение надежд.

Отказ от старых взглядов, конечно, непрост. Люди, которые отваживаются на это, обычно либо молоды, либо являются новичками в этой области науки. Утверждение новой парадигмы, как отмечает Т.Кун, осуществляется в условиях, когда большинство ученых еще не в состоянии мыслить по-новому, понятный аппарат науки неадекватен новому содержанию. В это время новаторские идеи оказываются неассимилированными всей наукой. Однако вся эта перестройка неизбежна.

«Уайтхед, — замечает Т.Кун, — хорошо уловил неисторический дух научного сообщества, когда писал: «Наука, которая не решается забыть своих основателей, погибла». К счастью, вместо того, чтобы забывать своих героев, ученые всегда имеют возможность забыть (или пересмотреть) их работы».

В некотором смысле защитники различных парадигм живут в различных мирах. Конечно, поскольку они относят свои теории к действительности, которая существует объективно, их представления не могут быть произвольными. Но они по-разному воспринимают реальность. Различные парадигмы несоизмеримы. Поэтому переход от одной парадигмы к другой нельзя совершить постепенно посредством логики и ссылок на опыт. Он должен осуществляться сразу.

Здесь ситуация подобная той, которая возникает, когда вы смотрите на рисунок с изображением двух профилей лица человека, обращенных
друг к другу и нарисованных рядом. Вдруг вы замечаете, что видите не лица людей, а изображение вазы.

Говоря о развитии науки нельзя уйти от обсуждения проблемы прогресса в ее истории.

«Революции оканчиваются победой одного из двух противоборствующих лагерей, — пишет Т.Кун. — Будет ли эта группа утверждать, что результат ее победы не есть прогресс? Это было бы равносильно признанию, что они ошибаются и что их оппоненты правы».

Если посмотреть на развитие науки в целом, то в ней очевиден прогресс, выражающийся в том, что научные теории предоставляют все большие возможности ученым для решения головоломок.

Однако нет никаких оснований считать более поздние теории лучше отражающими происходящее в действительности.

«Я не сомневаюсь, например, что ньютоновская механика, — пишет Т.Кун, — улучшает механику Аристотеля и что теория относительности улучшает теорию Ньютона в том смысле, что дает лучшие инструменты для решения головоломок. Но в их последовательной смене я не вижу связанного и направленного онтологического развития».

Концепция развития науки Т. Куна является по существу и философско-методологической и историографической. Важной ее особенностью является обращение к социально-психологическим аспектам деятельности ученых, которые, по его мнению, существенно влияют на характер развития науки.

7. МЕТОДОЛОГИЯ ИССЛЕДОВАТЕЛЬСКИХ ПРОГРАММ

«Некоторые философы, — пишет И. Лакатос, — столь озабочены решением своих эпистемологических и логических проблем, что так и не достигают того уровня, на котором их бы могла заинтересовать реальная история науки. Если действительная история не соответствует их стандартам, они, возможно, с отчаянной смелостью предложат начать заново все дело науки».

Как считает И. Лакатос, всякая методологическая концепция должна функционировать как историографическая.

Наиболее глубокая ее оценка может быть дана через критику той рациональной реконструкции истории науки, которую она предлагает.
И. Лакатос развивает свою, довольно близкую к куновской, концепцию методологии научного познания, которую он называет методологией научно-исследовательских программ. Она применяется им не только для трактовки особенностей развития науки, но и для оценки различных конкурирующих логик научного исследования.

Согласно И.Лакатосу, развитие науки представляет собой конкуренцию научно-исследовательских программ. Сущность научной революции заключается в том, что одна исследовательская программа вытесняет другую.

Поэтому фундаментальной единицей оценки процесса развития науки является не теория, а исследовательская программа.

— Она включает в себя «жесткое ядро», в которое входят неопровержимые для сторонников программы фундаментальные положения.

— Кроме того, в нее входит «позитивная эвристика», которая «определяет проблемы для исследования, выделяет защитный пояс вспомогательных гипотез, предвидит аномалии и победоносно превращает их в подтверждающие примеры».

— Исследовательская программа может развиваться прогрессивно и регрессивно. В первом случае ее теоретическое развитие приводит к предсказанию новых фактов. Во втором — программа лишь объясняет новые факты, пред-

сказанные конкурирующей программой либо открытые случайно.

— Исследовательская программа испытывает тем больше трудности, чем больше прогрессирует ее конкурент. Это связано с тем, что предсказываемые одной программой факты всегда являются аномалиями для другой.

И. Лакатос подчеркивает большую устойчивость исследовательской программы.

«Ни логическое доказательство противоречивости, ни вердикт ученых об экспериментально обнаруженной аномалии не могут одним ударом уничтожить исследовательскую программу».

Главная ценность программы — ее способность пополнять знания, предсказывать новые факты. Противоречия же и трудности в объяснении каких-либо явлений, И.Лакатос здесь, несомненно, прав, не влияют существенно на отношение к ней ученых.
В геометрии Евклида на протяжении двух тысяч лет не удавалось решить проблему пятого постулата.

Многие десятилетия на весьма противоречивой основе развивались исчисление бесконечно малых, теория вероятностей, теория множеств.

Известно, что И.Ньютон не мог на основании механики объяснить стабильность Солнечной системы и утверждал, что Бог исправляет отклонения в движении планет, вызванные различного рода возмущениями. Не-смотря на то, что такое объяснение вообще никого не удовлетворяло, кроме, может быть, самого Ньютона, который был, как известно, очень религиозным человеком (он считал, что его исследований в теологии не менее значимы, чем в математике и механике), небесная механика в целом успешно развивалась. Эту проблему удалось решить П.Лапласу только в начале XIX в.

Еще один классический пример.
Дарвин не мог объяснить так называемого «кошмар на Дженкинса» и, тем не менее, его теория успешно развивалась.

Известно, что дарвинская теория базируется на трех факторах: изменчивости, наследственности и отборе. У любого организма имеется изменчивость, осуществляющаяся ненаправленным образом. В силу этого изменчивость только в небольшом количестве случаев может быть благоприятной для приспособления данного организма к окружающей среде. Какая-то изменчивость не наследуется, какая-то наследуется. Эволюционное значение имеет наследуемая изменчивость. По Ч. Дарвину, большую возможность для будущего имеют те организмы, которые наследуют такого рода изменения, которые дают им большую возможность для приспособления к окружающей среде. Такие организмы лучше выживают и становятся основой для нового шага эволюции.

Для Ч. Дарвина законы наследования — то, как наследуется изменчивость, — имели решающее значение. В своей концепции наследования он исходил из той идеи, что наследственность осуществляется непрерывным образом.

Представим себе, что белый человек попал на африканский континент. Признаки белого, в том числе и «белизна» будут, по Ч.Дарвину, передаваться следующим образом. Если он женится на негрите, то у их детей будет половина «крови» «белой». Поскольку на континенте белый один, то его дети будут вступать в брак с неграми. Но в таком случае доля «белизны» будет асимптоматически убывать и в конце концов исчезнет. Эво-
люционного значения она иметь не может. Такого рода соображения вы-
сказал Дженкинс. Он обратил внимание на то, что положительные каче-
ства, которые способствуют приспособлению организма к среде, встреча-
ются крайне редко. И следовательно, организм, который будет иметь эти
качества, заведомо встретится с организмом, который эти качества не бу-
дет иметь, и в последующих поколениях положительный признак рассеит-
ся³. Следовательно, он не может иметь эволюционное значение.

Ч. Дарвин не мог никак справиться с этой задачей. Не случайно это
рассуждение получило название «кошмар Дженкинса». У дарвинской
теории были еще и другие трудности.

И хотя к учению Ч. Дарвина на разных этапах относились по-
разному, но дарвинизм никогда не умирал, всегда у него были последова-
тели. Как известно, современная эволюционная концепция — синтетиче-
ская теория эволюции — базируется на идеях Ч. Дарвина, соединенных,
правда, с м mendelevskой концепцией дискретных носителей наследственно-
сти, которая, кстати, и ликвидирует «кошмар Дженкинса».

В рамках концепции И.Лакатоса становится особенно очевидной
важность теории и связанной с ней исследовательской программы для дея-
тельности ученого. Вне ее ученый просто не в состоянии работать. Глав-
ным источником развития науки является не взаимодействие теории и эм-
пирических данных, а конкуренция исследовательских программ в деле
лучшего описания и объяснения наблюдаемых явлений и, самое главное,
предсказания новых фактов.

Поэтому, изучая закономерности развития науки, необходимо особое
внимание уделять формированию, развитию и взаимодействию исследо-
вательских программ.

И.Лакатос показывает, что достаточно богатую научную программу
всегда можно защитить от любого ее видимого несоответствия с эмпири-
ческими данными.

И.Лакатос рассуждает в таком стиле.

Допустим, что мы на базе небесной механики рассчитали траектории
движения планет. С помощью телескопа мы фиксируем их и видим,
что они отличаются от расчетных. Разве ученый скажет в этом случае, что
законы механики неверны? Конечно, нет. У него даже мысли такой не по-
явится. Он наверняка скажет, что-либо не точны измерения, либо непра-

³ Правильно: «рассеется». — Яр.
вильны расчеты. Он, наконец, может допустить наличие другой планеты, которую еще не наблюдали, которая и вызывает отклонение траектории планеты от расчетной (так и было на самом деле, когда Леверье и Адаме открыли новую планету). А допустим, что в том месте, где они ожидали увидеть планету, ее бы не оказалось. Что они сказали бы в этом случае? Что механика неверна? Нет, этого бы не случилось. Они наверняка придумали бы какие-нибудь другие объяснения для этой ситуации.

Эти идеи очень важны. Они позволяют понять, с одной стороны, как научные концепции преодолевают стоящие на их пути барьеры, а с другой — почему всегда существуют альтернативные исследовательские программы.

Мы знаем, что даже тогда, когда эйнштейновская теория относительности вошла в контекст культуры, антиэйнштейновские теории продолжали жить.

А вспомним, как развивалась генетика. Ламаркистские идеи воздействия внешней среды на организм защищались, несмотря на то, что была масса фактов, которые противоречили этому.

Достаточно сильная в теоретическом отношении идея всегда оказывается достаточно богатой для того, чтобы ее можно было защитить.

С точки зрения И. Лакатоса можно «рационально придерживаться регрессирующей программы до тех пор, пока ее не обогнит конкурирующая программа и даже после этого». Всегда существует надежда на временность неудач. Однако представители регрессирующих программ неминуемо будут сталкиваться со все возрастающими социально-психологическими и экономическими проблемами.

Конечно, никто не запрещает ученому разрабатывать ту программу, которая ему нравится. Однако общество не будет оказывать ему поддержки.

«Редакторы научных журналов, — пишет И. Лакатос, — станут отказываться публиковать их статьи, которые, в общем, будут содержать либо широковещательные переформулировки их позиции, либо изложение контрпримеров (или даже конкурирующих программ) посредством лингвистических ухищрений ad hoc. Организации, субсидирующие науку, будут отказывать им в финансировании...»

«Я не утверждаю, — замечает он, — что такие решения обязательно будут бесспорными. В подобных случаях следует опираться на здравый смысл».

kupcov_v_i_i_dr_filosofiya_i_metodologiya_nauki
Концепция исследовательских программ И. Лакатоса может, как это он сам демонстрирует, быть применена и к самой методологии науки.

В каждой из рассмотренных нами методологических концепций есть «жесткое ядро», «позитивная эвристика», прогрессивная и регрессивная стадии развития.

С этой точки зрения рассмотренные нами подходы к трактовке особенностей научного познания следует оценивать по тому вкладу, который они внесли в расширение понятийного аппарата и проблематики философии и методологии науки. И, конечно, необходимо соотносить эти концепции со временем, с той интеллектуальной средой, в которой они рождались, жили и умирали.

(201)

X. ТРАДИЦИИ И НОВАЦИИ В РАЗВИТИИ НАУКИ

Наука обычно представляется нам как сфера почти непрерывного творчества, как сфера, где стремление к новому является основным мотивом деятельности. В науке нет смысла повторять то, что уже сделано нашими предшественниками, получать заново те знания, которые уже вошли в учебные курсы, переписывать чужие книги или статьи.

В этом плане любой подлинный ученый стоит перед лицом неизведенного и вынужден делать то, что до него не делал никто другой.

Казалось бы, что в этой ситуации не может быть и речи не только о традициях, но и о каких-либо закономерностях научного познания вообще, ибо любая закономерность связана с повторяемостью явлений.

А между тем именно традиции образуют «скелет» науки, именно они определяют характер деятельности ученого.

Вот что писал по этому поводу в начале прошлого века один из крупнейших математиков Эварист Галуа: «Часто кажется, что одни и те же идеи родятся у нескольких, подобно откровению. Если поискать причину этого, то легко найти ее в трудах тех, которые им предшествовали, где представлены эти идеи без ведома их авторов».

Чаще всего, продолжает Э. Галуа, это порождает прискорбную конкуренцию и унизительное соперничество. «Однако нетрудно усмотреть в этом факте доказательство того, что ученые не более, чем другие, созданы для изолированности, что они также принадлежат к своей эпохе...».

(202)
А вот мнение одного из создателей современной физики Вернера Гейзенберга: «Мы убеждены, что наши современные проблемы, наши методы, наши научные понятия по меньшей мере отчасти вытекают из научной традиции, сопровождающей или направляющей науку ее многовековой истории».

А что значит «отчасти»?

Чуть ниже, когда речь заходит о роли традиций при выборе проблем, В.Гейзенберг высказывает гораздо более категорично: «Бросая ретроспективный взгляд на историю, мы видим, что наша свобода в выборе проблем, похоже, очень невелика. Мы привязаны к движению нашей истории, наша жизнь есть часть этой жизненной традиции, а наша свобода выбора ограничена, по-видимому, волей решать, хотим мы или не хотим участвовать в развитии, которое совершается в нашей современности независимо от того, вносим ли мы в него какой-то свой вклад или нет». (В.Гейзенберг. Шаги за горизонт. М., 1987, стр. 226—227).

Но если дело обстоит таким образом, если ученый настолько ограничен в своем выборе, то как же быть с творчеством, которое чаще всего ассоциируется в нашем сознании с максимальной свободой? Как в рамках традиций объяснить появление нового? После работы Т.Куна «Структура научных революций» эта проблема стала одной из основных в философии науки.

1. ТРАДИЦИОННОСТЬ НАУКИ И ВИДЫ НАУЧНЫХ ТРАДИЦИЙ

Начнем с традиций, их видов и их места в науке. Основателем учения о научных традициях, безусловно, является Т.Кун. Конечно, на традиционность в работе ученого и раньше обращали внимание, о чем, в частности, свидетельствует хотя бы приведенное выше высказывание Э.Галуа, но Т.Кун впервые сделал традиции центральным объектом рассмотрения при анализе науки, придав им значение основного конституирующего фактора в научном развитии.

(203)

НОРМАЛЬНАЯ НАУКА КАК НАУКА ТРАДИЦИОННАЯ

Нормальная наука, согласно Т.Куну — это «исследование, прочно опирающееся на одно или несколько прошлых достижений — достижений, которые в течение некоторого времени признаются определенным науч-
ным сообществом как основа для развития его дальнейшей практической деятельности».

Уже из самого определения следует, что речь идет о традиции.

Прошлые достижения, лежащие в основе такой традиции, Т. Кун называет парадигмой.

Чаще всего речь идет о некоторой достаточно общепринятой теоретической концепции типа системы Коперника
mekhaniki Nьютонa
kислородной теории Лавуазье
и т. п.

Конкретизируя свое представление о парадигме, Кун вводит понятие о дисциплинарной матрице, в состав которой он включает следующие четыре элемента:
— символические обобщения типа второго закона Ньютонa, закона Ома, закона Джоуля-Ленца и т.д.;
— концептуальные модели, примерами которых могут служить общие утверждения такого типа: «Теплота представляет собой кинетическую энергию частей, составляющих тело» или «Все воспринимаемые нами явления существуют благодаря взаимодействию в пустоте качественно однородных атомов»;
— ценностные установки, принятые в данном научном сообществе и проявляющиеся себя при выборе направлений исследования, при оценке полученных результатов и состояния науки в целом;
— образцы решений конкретных задач и проблем, с которыми неизбежно сталкивается уже студент в процессе обучения.

В чем же состоит деятельность ученого в рамках нормальной науки?

Т. Кун пишет: «При ближайшем рассмотрении этой деятельности в историческом контексте или в современной лаборатории создается впечатление, будто бы природу пытаются втиснуть в парадигму, как в заранее сколоченную и довольно тесную коробку. Цель нормальной науки ни в коей мере не требует предсказания новых видов явлений: явления, которые не вмещаются в эту коробку часто, в сущности, вообще упускаются из вида. Ученье в русле нормальной науки не ставят себе цели создания новых
теорий, обычно к тому же они нетерпимы и к созданию таких теорий другими».

Итак, в рамках нормальной науки ученый настолько жестко запрограммирован, что не только не стремится открыть или создать что-либо принципиально новое, но даже не склонен это новое признавать или замечать.

Что же он делает в таком случае?

Концепция Куна выглядела бы пустой фантазией, если бы ему не удалось убедительно показать, что нормальная наука способна успешно развиваться. Т.Кун, однако, показал, что традиция является не тормозом, а, напротив, необходимым условием быстрого накопления знаний.

И действительно, сила традиции как раз в том и состоит, что мы постоянно воспроизводим одни и те же действия, один и тот же способ поведения все снова и снова при разных, вообще говоря, обстоятельствах.

Потому и признание той или иной теоретической концепции означает постоянные попытки осмыслить с ее точки зрения все новые и новые явления, реализуя при этом стандартные способы анализа или объяснения.

Это организует научное сообщество, создавая условия для взаимопонимания и сопоставимости результатов, и порождает ту «индустрию» производства знаний, которую мы и наблюдаем в современной науке.

Но речь вовсе не идет при этом о создании чего-то принципиально нового. По образному выражению Т.Куна, ученые, работающие в нормальной науке, постоянно заняты «наведением порядка», т. е. проверкой и уточнением известных фактов, а также сбором новых фактов, в принципе предсказанных или выделенных теорией.

Химик, например, может быть занят определением состава все новых и новых веществ, но само понятие химического состава и способы его определения уже заданы парадигмой. Кроме того, в рамках парадигмы никто уже не сомневается, что любое вещество может быть охарактеризовано с этой точки зрения.

Таким образом, нормальная наука очень быстро развивается, накапливая огромную информацию и опыт решения задач. И развивается при этом не вопреки традициям, а именно в силу своей традиционности. Пониманием этого факта мы и обязаны Томасу Куну.

Но как же в таком случае происходят изменение и развитие самих традиций, как возникают новые парадигмы?
«Нормальная наука, — пишет Т.Кун, — не ставит своей целью нахождение нового факта или теории, и успех в нормальном научном исследовании состоит вовсе не в этом. Тем не менее новые явления, о существовании которых никто не подозревал, вновь и вновь открывается научными исследованиями, а радикально новые теории опять и опять изобре-таются ученными. История даже наводит на мысль, что научное предприятие создало исключительно мощную технику для того, чтобы преподносить сюрпризы подобного рода».

Как же конкретно появляются новые фундаментальные факты и теории?

«Они, — отвечает Т.Кун, — создаются непреднамеренно в ходе игры по одному набору правил, но их восприятие требует разработки другого набора правил».

Теперь попробуем подвести общий итог:

— ученый работает в достаточно жестких традициях, что, однако, не только не мешает, но, напротив, способствует быстрому накоплению новых знаний;

— эти знания парадигмальны, т.е. не содержат ничего принципиально нового, что не укладывалось бы в парадигму, но это отнюдь не лишает их новизны и ценности вообще;

— ученый и не стремится к получению принципиально новых результатов, однако, действуя по заданным правилам, он непреднамеренно, т.е. случайно наталкивается на такие факты и явления, которые требуют изменения самих этих правил.

Можно ли что-либо возразить против этой достаточно простой и принципиальной модели? Два пункта вызывают сомнение.

— Первый был, вероятно, камнем преткновения и для самого Т.Куна. Как согласовать изменение парадигмы под напором новых фактов с утверждением, что ученый не склонен воспринимать явления, которые в парадигму не укладывались, что эти явления «часто, в сущности, вообще упускаются из виду»? С одной стороны, Т.Кун приводит немало фактов, показывающих, что традиция препятствует ассимиляции нового, с другой — он вынужден такую ассимиляцию признать. Это выглядит как противоречие.

— Сомнительность второго пункта менее очевидна.
Кун резко противопоставляет работу в рамках нормальной науки, с одной стороны, и изменение парадигмы — с другой. В одном случае, ученый работает в некоторой традиции, в другом, — выходит за ее пределы.

Конечно, эти два момента противостоят друг другу, но, вероятно, не только в масштабах науки как целого. Т.Кун же в основном говорит именно о науке, и это чрезмерно глобализирует наше представление о традиции. Фактически получается, что наука — это чуть ли не одна традиция, а это сильно затрудняет анализ того, что происходит в науке.

ЗНАНИЕ ЯВНОЕ И НЕЯВНОЕ

Нетрудно показать, что в научном познании мы имеем дело не с одной или несколькими, а со сложным многообразием традиций, которые отличаются друг от друга и по содержанию, и по функциям в составе науки, и по способу своего существования.

Начнем с последнего.

Достаточно всмотреться более внимательно в дисциплинарную матрицу Т.Куна, чтобы заметить некоторую неоднородность.

— С одной стороны, он перечисляет такие ее компоненты, как символические обобщения и концептуальные модели, — а с другой, — ценностные и образцы решений конкретных задач.

Но первые существуют в виде текстов и образуют содержание учебников и монографий, в то время как никто еще не написал учебного курса с изложением системы научных ценностей. Ценностные ориентации мы получаем не из учебников, мы усваиваем их примерно так же, как родной язык, т.е. по непосредственным образцам.

Известный химик и философ М.Полани показал в конце 50-х годов нашего века, что предпосылки, на которые ученый опирается в своей работе, невозможно полностью вербализовать, т.е. выразить в языке.

«То большое количество учебного времени, — писал он, — которое студенты-химики, биологи и медики посвящают практическим занятиям, свидетельствует о важной роли, которую в этих дисциплинах играет передача практических знаний и умений от учителя к ученику. Из сказанного можно сделать вывод, что в самом сердце науки существуют области практического знания, которые через формулировки передать невозможно».

Знания такого типа М.Полани назвал неявными знаниями. Ценностные ориентации можно смело причислить к их числу.
А как быть с образцами решений конкретных задач?
— С одной стороны, они могут существовать в виде текста, и именно такие образцы Т. Кун в первую очередь имеет в виду.
— Но, с другой, — перед нами именно образцы, а не словесные предписания, ибо нам важна та информация, которая непосредственно в тексте не выражена.

В тексте, например, дано доказательство теоремы Пифагора, но нас интересует не эта именно теорема, а то, как вообще следует строить математическое доказательство. Эта информация представлена здесь только в форме примера, т.е. неявным образом.

Итак, традиции могут быть как вербализованными, существующими в виде текстов, так и невербализованными, существующими в форме неявного знания.

Последние передаются от учителя к ученику или от поколения к поколению на уровне непосредственной демонстрации образцов или, как иногда говорят, на уровне социальных эстафет.

Важно то, что признание неявного знания очень сильно усложняет и обогащает нашу картину традиционности науки.

Учить надо не только ценности и образцы решений конкретных задач, как это делает Т.Кун, но и многое, многое другое.

Что бы ни делал ученый, ставя эксперимент или излагая его результаты, читая лекции или участвуя в научной дискуссии, он, часто сам того не желая, демонстрирует образцы, которые как невидимый вирус заражают окружающих.

«Современная форма научных статей, — пишет известный современный физик Г.Бонди, — представляет собой некоторую разновидность смирительной рубашки».

Что он имеет в виду?

А то, вероятно, что при написании статей ученый вынужден следовать определенным канонам, соблюдать некоторые достаточно жесткие правила. Но эти правила нигде полностью не записаны, речь может идти только о силе воздействия непосредственных образцов, о неявном знании.

Посмотрите и сравните друг с другом рефераты кандидатских или докторских диссертаций. Они различны по содержанию, но написаны по одной и той же схеме. Можно подумать, что они следуют какой-то официальной инструкции, однако такой инструкции не существует.
Все сказанное относится, несомненно, не только к статьям или рефератам, но в такой же степени к лекционным курсам, учебникам, монографиям. Здесь мы тоже встречаем постоянное воспроизведение одних и тех же схем и принципов организации материала иногда на протяжении многих лет.

На интересный пример такого рода указывает американский специалист по термодинамике М.Трайбус: «С того времени, когда Рудольф Клаузиус написал свою книгу «Механическая теория теплоты»… почти все учебники по термодинамике для инженеров пишутся по одному образцу. Конечно, за прошедший век интересы изменились и состоят не в изучении паровых машин, однако и сейчас, читая книгу Клаузиуса, нельзя сказать, что она устарела».

Традиции, таким образом, управляют не только ходом научного исследования.

Не в меньшей степени они определяют форму фиксации полученных результатов, принципы организации и систематизации знания.

И образцы — это не только образцы постановки эксперимента или решения задач, но и образцы продуктов научной деятельности.

Учитывая это, мы легко обнаружим своеобразную связь традиций разного типа, которые иногда напоминают две стороны одной и той же медали.

Так, например, теория, выступающая в роли куновской парадигмы, может одновременно фигурировать и как образец для построения других теорий.

«Я хотел бы подчеркнуть одно обстоятельство, — пишет Р.Фейнман. — Теории, посвященные остальной физике, очень похожи на квантовую электродинамику… Почему все физические теории имеют столь сходную структуру?» Одну из возможных причин Р.Фейнман видит в ограниченности воображения физиков: «встретившись с новым явлением, мы пытаемся вогнать его в уже имеющиеся рамки».

Но это и значит в данном случае строить новые теории по образцу уже имеющихся, используя последние как своеобразные проекты.

Можно сказать, что и любое знание функционирует подобным двояким образом:

(209)

(210)
— с одной стороны, фиксируя некоторый способ чисто практических или познавательных действий, производственные операции или методы расчета, оно выступает как вербализованная традиция;
— с другой, уже имплицитно, как неявное знание задает образец продукта, к получению которого надо стремиться.

В простейшем случае речь идет о постановке вопросов.
Так, например, знание формы и размеров окружающих нас предметов еще в глубокой древности породило вопрос о форме и размерах Земли.
Знание расстояний между земными ориентирами позволило поставить вопрос о расстоянии до Луны и до звезд.
Ну как не вспомнить здесь высказывание В.Гейзенберга о традиционности тех проблем, которые мы ставим и решаем!

В одной из работ известного французского лингвиста Гюстава Гийома сформулирован тезис, который может претендовать на роль фундаментального принципа теории познания: «Наука основана на интуитивном понимании того, что видимый мир говорит о скрытых вещах, которые он отражает, но на которые не похож».

И действительно, мы ведь почти никогда не удовлетворены уровнем наших знаний, мы постоянно предполагаем, что за тем, что освоено, скрывается еще что-то.
Что же именно?
Можно сказать, что вся история философии, начиная с Платона и Демокрита пытается ответить на этот вопрос:
что представляет собой мир «скрытых вещей», к познанию которого мы стремимся?
Для Демокрита за «видимым миром» скрываются атомы и пустота, для Платона — мир объективных идей. Иными словами, для того, чтобы объяснить познание в его постоянном стремлении перейти границу уже освоенного, мы и сам познаваемый мир пытаемся представить как некоторую двухэтажную конструкцию, состоящую из непосредственно данных и скрытых вещей.

(211)

Но можно выбрать и другой путь. «Скрытый мир» Гийома — это мир нашего неявного осознания проблем, это тот же самый мир уже накопленных знаний, но в роли задающего традицию образца.

Иными словами, этот «скрытый мир» мы несем в самих себе, это мир наших традиций, это мы сами.
МНОГООБРАЗИЕ ТРАДИЦИЙ

В философии науки пока не существует какой-либо приемлемой классификации традиций, но изложенное выше уже позволяет и осознать их многообразие и выделить некоторые виды.

Мы уже показали, что традиции отличаются друг от друга по способу своего существования, что они могут быть вербализованными и невербализованными, явными и неявными.

Вводя в рассмотрение неявные традиции, мы попадаем в сложный и малоисследованный мир, в мир, где живет наш язык и научная терминология, где передаются от поколения к поколению логические формы мышления и его базовые категориальные структуры, где удерживаются своими корнями так называемый здравый смысл и научная интуиция. Историки и культурологи часто используют термин «менталитет» для обозначения тех слоев духовной культуры, которые не выражены в виде явных знаний, и тем не менее существенно определяют лицо той или иной эпохи или народа. Но и любая наука имеет свой менталитет, отличающий ее от других областей научного знания, но тесно связанный с менталитетом эпохи.

Противопоставление явных и неявных традиций дает возможность провести и более глубоко осознать давно зафиксированное в речи различие научных школ, с одной стороны, и научных направлений, с другой. Развитие научного направления может быть связано с именем того или другого крупного ученого, но оно вовсе не обязательно предполагает постоянные личные контакты людей, работающих в рамках этого направления.

Другое дело — научная школа.

Здесь эти контакты абсолютно необходимы, ибо огромную роль играет опыт, непосредственно передаваемый от учителя к ученику, от одного члена сообщества к другому. Именно поэтому научные школы имеют, как правило, определенное географическое положение: Казанская школа химиков, Московская математическая школа и т.п.

Неявные традиции отличаются друг от друга не только по содержанию, но и по механизму своего воспроизведения. Мы уже видели, что в основе этих традиций могут лежать как образцы действий, так и образцы продуктов.

Это существенно: одно дело, если вам продемонстрировали технологию производства предмета, например, глиняной посуды, другое — показали готовый кувшин и предложили сделать такой же. Во втором случае,
вам предстоит нелегкая и далеко не всегда осуществимая работа по рекон- струкции необходимых производственных операций. В познании, однако, мы постоянно сталкиваемся с проблемами такого рода.

Рассмотрим несколько примеров.

Мы привыкли говорить о таких методах познания, как абстракция, классификация, аксиоматический метод.

— Но, строго говоря, слово «метод» здесь следовало бы взять в кавычки. Можно продемонстрировать на уровне последовательности операций какой-нибудь метод химического анализа или метод решения системы линейных уравнений, но никому пока не удивалось проделать это применительно к классификации или к процессу построения аксиоматической теории.

В формировании аксиоматического метода огромную роль сыграли «Начала» Евклида, но это был не образец операций, а образец продукта.

— Аналогично обстоит дело и с классификацией. Наука знает немало примеров удачных классификаций, масса ученых пытается построить нечто аналогичное в своей области, но никто не владеет рецептом построения удачной классификации.

— Нечто подобное можно сказать и о таких методах, как абстракция, обобщение, формализация и т.д. Мы можем легко продемонстрировать соответствующие образцы продуктов, т.е. общие и абстрактные высказывания или понятия, достаточно формализованные теории, но никак не процедуры, не способы действия.

Кстати, таковые вовсе не обязательно должны существовать, ибо процессы исторического развития далеко не всегда выражены в терминах человеческих действий. Мы все владеем своим родным языком, он существует, но это не значит, что можно предложить или реконструировать технологию его создания.

Мы не хотим всем этим сказать, что перечисленные методы и вообще образцы продуктов познания есть нечто иллюзорное, мы отнюдь не собираемся приуменьшать их значение. Они лежат в основе целеполагания, формируют те идеалы, к реализации которых стремится ученый, организуют поиск, определяют форму систематизации накопленного материала. Однако их не следует смешивать с традициями, задающими процедурный арсенал научного познания.
Еще одним основанием для классификации традиций могут служить их место, их роль в системе науки.

В свете уже изложенного бросается в глаза, что одни традиции задают способы получения новых знаний, а другие — принципы их организации.

— К первым относятся вербализованные инструкции, задающие методику проведения исследований, образцы решенных задач, описания экспериментов и т.д.

— Вторые — это образцы учебных курсов, о роли которых мы уже говорили, классификационные системы, лежащие в основе подразделения научных дисциплин, категориальные модели действительности, определяющие рубрикацию при организации знаний, наконец, многочисленные попытки определения предмета тех или иных дисциплин.

На традиции систематизации и организации знаний часто не обращают достаточного внимания, придавая основное значение методам исследования. Это, однако, не вполне правомерно.

Формирование новых научных дисциплин нередко связано как раз с появлением соответствующих программ организации знания.

Основателем экологии, например, принято считать Э.Геккеля, который высказал мысль о необходимости науки, изучающей взаимосвязи организмов со средой. Огромное количество сведений о такого рода взаимосвязях было уже накоплено к этому времени в рамках других биологических дисциплин, но именно Геккель дал толчок к тому, чтобы собрать все эти сведения вместе в рамках одного научного предмета.

Можно смело сказать, что ни одна наука не имеет оснований считать себя окончательно сформировавшейся, пока не появились соответствующие обзоры или учебные курсы, т.е. пока не заданы традиции организации знания.

«Потребность в знании есть лишь бабушка науки, — писал наш известный литературовед Б.И.Ярхо, — матерью же является «потребность в сообщении знаний».

«Действительно, — продолжает он чуть ниже, — никакого научного познания (в отличие от ненаучного) не существует: при открытии наиболее достоверных научных положений интуиция, фантазия, эмоциональный тонус играют огромную роль наряду с интеллектом. Наука же есть рационализированное изложение познанного, логически оформленное описание.
той части мира, которую нам удалось осознать, т.е. наука — особая форма сообщения (изложения), а не познания».

И еще один вывод напрашивается из изложенного выше:

каждая традиция имеет свою область распространения, и есть традиции специально-научные, не выходящие за пределы той или иной области знания, а есть общенаучные или, если выражаться более осторожно, междисциплинарные.

Выше мы уже видели, что одна и та же концепция в форме явного знания может выступать в роли куновской парадигмы, а в форме знания неявного задавать образцы для других научных дисциплин.

(215)

Э. Геккель сформулировал принцип организации знания, породивший экологию как биологическую дисциплину, но последняя после этого вызвала к жизни уже немало своих двойников типа экологии преступности, этнической экологии и т.п.

Нужно ли говорить, что все эти дисциплины не имеют никакого прямого отношения не только к биологии, но и к естествознанию вообще.

В этом пункте концепция Т. Куна начинает испытывать серьезные трудности. Наука в свете его модели выглядит как обособленный организм, живущий в своей парадигме точно в скафандре с автономной системой жизнеобеспечения. И вот оказывается, что никакого скафандра нет, и ученый подвержен всем воздействиям окружающей среды.

Возникает даже вопрос, который никак не мог возникнуть у Куна: а в каких традициях ученый работает прежде всего — в специальнонаучных или междисциплинарных? И почему биолог, на каждом шагу использующий методы физики или химии и нередко мечтающий о теоретизации и математизации своей области по физическому образцу, почему он все же биолог, а не кто-либо другой? Чем обусловлен этот его Я-образ?

Этот вопрос о границах наук вовсе не так прост, как это может показаться на первый взгляд. Найти ответ — это значит выделить особый класс предметообразующих традиций, с которыми наука и связывает свою специфику, свое особое положение в системе знания, свой Я-образ.

2. ТРАДИЦИИ И НОВАЦИИ

Как же выглядит развитие науки в свете изложенных представлений?
Если полагать, что основная трудность в том, чтобы согласовать творческий характер науки с ее приверженностью традициям, то мы, на первый взгляд, не упростили, а усложнили нашу задачу.

Действительно, введя в рассмотрение неявные, т.е. невербализованные традиции, о которых Т.Кун несколько раз упоминает, но только мельком, мы тем самым поставили ученого в еще более трудное положение: он теперь просто связан по рукам и ногам, ибо количество программ, которым он вынужден следовать, значительно увеличилось. Но, как ни странно, именно это значительное увеличение количества и разнообразия традиций позволяет преодолеть те трудности, с которыми столкнулась концепция Куна.

РАЗНООБРАЗИЕ НОВАЦИЙ В РАЗВИТИИ НАУКИ

Наука — это очень сложное и многослойное образование, и она не стоит на месте. Нас, однако, не будут интересовать социально-организационные аспекты науки, ее положение в обществе и т.д. Хотя разумеется, организация академий или научных институтов — это тоже новации, но в рамках других подходов к исследованию науки. Философию науки в первую очередь интересует знание, его строение, способы его получения и организации. О новациях именно в этой области и пойдет речь.

Надо сказать, что и при таких ограничениях мы имеем перед собой трудно обозримый по своему разнообразию объект исследования.

— Это и создание новых теорий,
— и возникновение новых дисциплин.

Иногда эти две акции почти совпадают, как в случае квантовой механики, но можно назвать немало областей знания, которые не имеют своих собственных теорий.

— Новации могут состоять в постановке новых проблем,
— в построении новой классификации или периодизации,
— в разработке новых экспериментальных методов исследования.

— Очень часто, говоря о новациях, имеют в виду обнаружение новых явлений, но в этот класс с равным правом входят как сенсационные открытия типа открытия высокотемпературной сверхпроводимости, так и достаточно рядовые описания новых видов растений или насекомых.
Приведенный список можно легко продолжить, но не следует ждать, что наступит момент, когда мы будем уверены в его полноте. Вероятно, даже сама задача составления такого полного списка лишена смысла.

Вот растет и развивается ребенок, можно ли составить полный список тех изменений, которые при этом происходят? Вероятно, надо попытаться выделить самое существенное, но критерием при этом является последующее развитие, которое будет вносить в наш выбор все новые и новые коррективы.

НЕЗНАНИЕ И НЕВЕДЕНИЕ

В целях дальнейшего изложения удобно разделить все новации на два класса:

новации преднамеренные
и
непреднамеренные

Первые возникают как результат целенаправленных акций, вторые — только побочным образом. Первые, согласно Т.Куну, происходят в рамках парадигмы, вторые — ведут к ее изменению. Предложенное деление можно значительно уточнить, если противопоставить друг другу незнание и неведение.

Будем называть незнанием то, что может быть выражено в виде вопроса или эквивалентного утверждения типа:

«Я не знаю того-то».
«Что-то» в данном случае — это какие-то вполне определенные объекты и их характеристики.

Мы можем не знать химического состава какого-либо вещества, расстояния между какими-либо городами, даты рождения или смерти политического деятеля далекого прошлого, причины каких-либо явлений...

Во всех этих случаях можно поставить и вполне конкретный вопрос или сформулировать задачу выяснения того, чего мы не знаем.

Нас в данном контексте интересуют не границы эрудиции отдельного человека, а границы познания, заданные определенным уровнем развития науки и культуры. На этом уровне мы способны сформулировать некоторое множество вопросов, задач, проблем, что образует сферу незнания. Все, что в принципе не
может быть выражено подобным образом, для нас просто не существует как нечто определенное. Это сфера неведения. Образно выражаясь, неведение — это то, что определено для Бога, но не для нас.

Демокрит, например, не знал точных размеров своих атомов, но мог в принципе поставить соответствующий вопрос. Однако он не ведал о спине электрона или о принципе В. Паули.

Легко показать, что незнание имеет иерархическую структуру.

Например, вы можете попросить своего сослуживца перечислить его знакомых, их пол, возраст, место рождения, род занятий и т. д. Это зафиксирует первый уровень вашего незнания, ибо перечисленные вопросы могут быть заданы без каких-либо дополнительных предположений, кроме того, что все люди имеют пол, возраст и прочие указанные выше характеристики.

Но среди знакомых вашего сослуживца вполне может оказаться боксер, писатель, летчик-испытатель... Поэтому возможны вопросы более специального характера, предполагающие введение некоторых дополнительных гипотез. Например, вопрос можно поставить так: «Если среди ваших знакомых есть писатель, то какие произведения он написал?»

Очевидно, что, действуя аналогичным образом применительно к науке, мы получим достаточно развернутую программу, нацеленную на получение и фиксацию нового знания, выявим некоторую перспективу развития данной науки в той ее части, которая зависит от уже накопленных знаний.

Иными словами, незнание — это область нашего целеполагания, область планирования нашей познавательной деятельности.

Строго говоря, — это неявная традиция, использующая уже накопленные знания в функции образцов.

Но перейдем к неведению. Как уже отмечалось, в отличие от незнания оно не может быть зафиксировано в форме конкретных утверждений типа: «Я не знаю того-то». Это «что-то» мы не

можем в данном случае заменить какими-то конкретными характеристиками. Мы получаем поэтому тавтологию: «Я не знаю того, чего не знаю». Тавтология такого типа — это и есть признак неведения.

Означает ли сказанное, что мы не можем в данном случае поставить никакого вопроса? Казалось бы, нет. Почему бы, например, не спросить: «Какие явления нам еще неизвестны?» Но вдруг мы в суть этого вопроса,
его можно расшифровать так: какими характеристиками обладают явления, никаких характеристик которых мы не знаем? Сама формулировка вопроса такова, что в ней отрицается возможность ответа: как можно узнать нечто неизвестно о чем?

Необходимо сделать следующую оговорку. На вопрос о том, какие явления нам неизвестны, можно получить и такой ответ: нам неизвестны люди с песьими головами. Но это просто другая трактовка вопроса, точнее, другое понимание слова «неизвестный». Люди с песьими головами нам известны, т.е. знакомы на уровне фантализации или фольклорных образов, но они неизвестны в том смысле, что мы никогда не сталкивались с ними в реальности.

Означает ли сказанное, что мы не можем поставить задачу поиска новых, еще неизвестных явлений, новых минералов, новых видов животных и растений? Такая задача или, точнее, желание, конечно же существует, но следует обратить внимание на следующее. Ставя вопрос, фиксирующий незнание, мы хорошо знаем, что именно нам надо искать, что исследовать, и это позволяет, в принципе, найти соответствующий метод, т.е. построить исследовательскую программу. В случае поиска неизвестного такого особого метода вообще быть не может, ибо нет никаких оснований для его спецификации.

Иными словами, невозможен целенаправленный поиск неизвестных или, точнее, неведомых явлений. Мы должны просто продолжать делать то, что делали до сих пор, ибо неведение открывается только побочным образом. Так, например, можно поставить задачу поиска таких видов животных или растений, которые не предусмотрены существующей систематикой. Вероятно, они существуют. Но что должен делать биолог для их поиска? То, что он делал до сих пор, т.е. пользоваться существующей систематикой при описании флоры и фауны тех или иных районов.

Поэтому задачи или вопросы, направленные на фиксацию неведения, мы будем называть праздными

в отличие от деловых вопросов или задач, фиксирующих незнание.

Праздные задачи не образуют никакой научной программы, не задают никакой конкретной исследовательской деятельности.

НОВЫЕ ЯВЛЕНИЯ И НОВЫЕ ПРОЕКТЫ

Противопоставление незнания и неведения в конкретных ситуациях истории науки требует детального анализа.
После открытия Австралии вполне правомерно было поставить вопроc о животных, которые ее населяют, об образе их жизни, способах размножения и т.д.

Это составляло сферу незнания.

Но невозможно было поставить вопрос о том, в течение какого времени кенгуру носит в сумке своего детеныша, ибо никто еще не знал о существовании сумчатых.

Это было в сфере неведения.

Нельзя, однако, сказать нечто подобное об «открытии» И. Галле планеты Нептун. Казалось бы, оба случая идентичны: биологи открыли новый вид, И. Галле обнаружил новую планету. Но это только на первый взгляд. Никакие данные биологии не давали оснований для предположения о существовании сумчатых животных. А планета Нептун была теоретически предсказана У. Леверье на основании возмущений Урана. Обнаружение этих последних — это тоже не из сферы неведения, ибо существовали теоретические расчеты движения планет, и вопрос об их эмпирической проверке был вполне деловым вопросом.

В свете сказанного можно уточнить понятие «открытие» и противопоставить ему такие термины, как «выяснение» или «обнаружение». Мы можем выяснить род занятий нашего знакомого, можем обнаружить, что он летчик. Это из сферы ликвидации незнания. И. Галле не открыл, а обнаружил планету Нептун. Но наука открыла сумчатых животных, открыла явление электризации трением, открыла радиоактивность и многое другое.

Открытия подобного рода часто знаменуют собой переворот в науке, но на них нельзя выйти путем целенаправленного поиска; из неведения к знанию нет рационального, целенаправленного пути.

С этой точки зрения, так называемые географические открытия нередко представляют собой, скорее, выяснение или обнаружение, ибо в условиях наличия географической карты и системы координат вполне возможен деловой вопрос о наличии или отсутствии островов в определенном районе океана или водопадов на той или иной еще неисследованной реке.

Точнее сказать поэтому, например, что Д. Ливингстон не открыл, а обнаружил или впервые описал водопад Виктория.

Итак, открытие — это соприкосновение с неведением.

Специфической особенностью открытий является то, что на них нельзя выйти путем постановки соответствующих деловых вопросов, ибо
существующий уровень развития культуры не дает для этого оснований. Принципиальную невозможность постановки того или иного вопроса следует при этом отличать от его нетрадиционности в рамках той или иной науки или культуры в целом.

Легче всего ставить традиционные вопросы, которые, так сказать, у всех на губах, труднее — нетрадиционные.

Абсолютное неведение находитс я вообще за пределами нашего целеполагания. Но есть смысл говорить о неведении относительном, имея в виду отсутствие в границах той или иной специальной дисциплины соответствующих традиций. Надо сказать, что практически такого рода относительное неведение часто ничем не отличается от абсолютного и преодолевается тоже побочным образом.

Все приведенные выше примеры относились в основном к сфере эмпирического исследования. Это вовсе не означает, что на уровне теории мы не открываем новых явлений. Достаточно вспомнить теоретическое открытие позитрона П. Дираком. И все же перенос противопоставления неведения и неведения в область теоретического мышления нуждается в ряде существенных дополнений.

Даже естественный язык зафиксировал здесь определенную специфику ситуации:

теории мы не обнаруживаем и не открываем, мы их строим или формулируем.

Это в такой же степени относится и к классификации, районированию, к созданию новых способов изображения. Из сферы обнаружений и открытий мы попадаем в сферу проектов и их реализаций, в сферу научной теоретической инженерии. Потенциал развития науки определяется здесь наличием соответствующих проектов, их характером, уровнем развития самих средств проектирования.

Вот конкретный пример такого проекта из области лингвистики. «Целью синтаксического исследования данного языка, — пишет известный современный лингвист Н. Хомский, — является построение грамматики, которую можно рассматривать как механизм некоторого рода, порождающего предложения этого языка».

Обратите внимание, речь идет не о том, что нам надо что-то выяснить, обнаружить, описать или измерить. Речь идет о построении, о построении некоторого алгоритма, порождающего предложения данного языка. Впрочем, как мы уже отмечали, каждая, уже созданная и функционирующая…
нирующая теория, может выступать как образец для построения новых теорий, т.е. играть роль проекта.

Проекты бывают, однако, как типовые, так и оригинальные. Здесь и проходит граница между незнанием и неведением.

Например, теория эрозионных циклов В.Дэвиса, сыгравшая огромную роль в развитии геоморфологии, построена в значительной степени по образцу дарвиновской теории развития коралловых островов.

У Ч.Дарвина все определяется взаимодействием двух факторов: ростом кораллового рифа, с одной стороны, и опусканием дна океана, с другой.

Дэвис использует аналогичный принцип при описании развития рельефа, у него тоже два фактора: тектонические поднятия, с одной стороны, и процессы эрозии, с другой. Таким образом, теория В.Дэвиса является реализацией некоторого «типового проекта».

А вот В. В. Докучаев, с именем которого неразрывно связано наше отечественное почвоведение, создает новый проект мировосприятия, но создает его как бы побочным образом, как это часто бывает с открытиями.

Исследователи отмечают, что В.В.Докучаев пришел в почвоведение как геолог и что именно это способствовало восприятию почвы как особого естественного тела Природы.

Иными словами, первоначально В.В.Докучаев работает в рамках определенных сложившихся традиций. Однако полученный им результат, показывающий, что почва есть продукт совокупного действия целого ряда природных факторов, оказывается образцом или проектом нового системного подхода в науках о Земле.

3. НОВАЦИИ И ВЗАИМОДЕЙСТВИЕ ТРАДИЦИЙ

Как же возникает новое в рамках традиционной работы и может ли в этих условиях появиться что-либо принципиально новое? Ответ на первую часть вопроса достаточно очевиден. Вся наша деятельность, связанная с ликвидацией незнания, достаточно традиционна. Трудности возникают тогда, когда речь заходит о сфере неведения. Очевидно, что в эту сферу мы проникаем непреднамеренно, но можно ли что-либо добавить к этому по сути тавтологическому утверждению?
КОНЦЕПЦИЯ «ПРИШЕЛЬЦЕВ» И ЯВЛЕНИЕ МОНТАЖА

Наиболее простая концепция, претендующая на объяснение коренных новаций в развитии науки, — это концепция «пришельцев». Нередко она напрашивается сама собой.

Вот что пишет известный австралийский геолог и историк науки У.Кэри об основателе учения о дрейфе континентов Альфреде Вегенере: «Вегенер изучал астрономию и получил докторскую степень, но затем он перенес главное внимание на метеорологию и женился на дочери известного метеоролога В.П.Кеппена. Я подозреваю, что, будь он по образованию геологом, ему никогда бы не осилить концепцию перемещения материков. Такие экзотические «прыжки» чаще всего совершаются перебежчиками из чуждых наук, не связанными ортодоксальной догмой».

Концепция «пришельцев» в простейшем случае выглядит так:
в данную науку приходит человек из другой области, человек, не связанный традициями этой науки, и делает то, что никак не могли сделать другие.

Недостаток этой концепции бросается в глаза. «Пришелец» здесь — это просто свобода от каких-либо традиций, он определен чисто отрицательно тем, что не связан никакой догмой. Рассуждая так, мы не развиваем Т. Куна, а делаем шаг назад, ибо начинаем воспринимать традицию только как тормоз: отпустим тормоза и сам собой начинается спонтанный процесс творчества.

Но Кун убедительно доказал, что успешно работать можно только в рамках некоторой программы.

Другое дело, если «пришелец» принес с собой в новую область исследования какие-то методы или подходы, которые в ней отсутствовали, но помогают по-новому поставить или решить проблемы.

Здесь на первое место выступает не столько свобода от традиции, сколько, напротив, приверженность им в новой обстановке, а «пришелец» — это скорее прилежный законопослушник, чем анархист.

Вот что писал академик В.И.Вернадский о Л.Пастере, имея в виду его работы по проблеме самозарождения: «Пастер... выступал как химик, владевший экспериментальным методом, вошедший в новую для него об-
ласть знания с новыми методами и приемами работы, увидевший в ней то, чего не видели в ней ранее ее изучавшие натуралы-наблюдатели».

Все это очень похоже на высказывание У.Кэри о А.Вегенере с той только разницей, что В.И.Вернадский подчеркивает не свободу Л.Пастера от биологических догм, а его приверженность точным экспериментальным методам.

Этот второй вариант концепции «пришельцев», несомненно, представляет большой интерес.

— Но если в первом случае для нас важна личность ученого, освободившегося от догм и способного к творчеству,

— то во втором — решающее значение приобретают те методы, которыми он владеет, те традиции работы, которые он с собой принес, сочетаемость, совместимость этих методов и традиций с атмосферой той области знания, куда они перенесены.

Вернемся к Л.Пастеру. Сам он о своей работе по проблеме самозарождения писал следующее: «Я не ввожу новых методов исследования, я ограничивался только тем, что стараюсь производить опыт хорошо, в том случае, когда он был сделан плохо, и избегаю тех ошибок, вследствие которых опыты моих предшественников были сомнительными и противоречивыми».

И действительно, Л.Пастер сплошь и рядом повторяет те эксперименты, которые ставились и до него, но делает это более тщательно, на более высоком уровне экспериментальной техники. Он, например, не просто кипятит ту или иную питательную среду, но точно при этом фиксирует время и температуру кипячения. Но это значит, что перед нами некоторый «монтаж»: биологический эксперимент «монтируется» с занесенными из другой области точными количественными методами.

А можно ли аналогичным образом объяснить успех А.Вегенера? Какие традиции он внес в геологию?

Начнем с того, что сама идея перемещения материков принадлежит вовсе не ему, ибо высказывалась много раз и многими авторами начиная с XVII в. Сам У.Кэри приводит длинный список имен и работ. Итак, в этом пункте А.Вегенер вполне традиционен. Бросается, однако, в глаза следующее, едва ли случайное совпадение. Как мы уже видели, Вегенер — это астроном, перешедший в метеорологию, к этому можно добавить, что он известный полярный исследователь. Иными словами, он своего рода научный «полиглот», не привыкший связывать себя границами той или иной
дисциплины. И именно эту полипредметность, т.е. комплексность, А.Вегенер вносит в обсуждение проблемы перемещения материков, используя данные палеонтологии, стратиграфии, палеоклиматологии, тектоники и т.д. Таким образом, в геологию пришел не человек, свободный от геологических традиций, а универсал, умеющий работать в разных традициях и это традиции комбинировать. Можно сказать, что А.Вегенер внес в геологию метод монтажа.

Именно эта возможность «монтажа» и приобретает в данном случае решающее значение. Личность ученого отступает здесь на задний план, ибо успех его деятельности оказывается во власти некоторой объективной необходимости.

Из ментального мира творческих поползновений мы попадаем в «третий мир» К. Поппера, в мир традиций, методов, проблем и знаний и должны выяснить те типы связей, которые господствуют в этом мире. Как взаимодействуют друг с другом в развитии науки различные традиции и методы познания? Каков механизм этого взаимодействия?

ТРАДИЦИИ И ПОБОЧНЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Как уже отмечалось, в сферу неведения мы проникаем непреднамеренно и побочным образом. Это значит, что, желая одного, исследователь получает нечто другое, чего он никак не мог ожидать. А всегда ли мы замечаем такие побочные результаты наших действий, всегда ли мы способны их выделить и зафиксировать? Факты свидетельствуют, что это происходит, как правило, только тогда, когда другая традиция «стоит на страже», чтобы подхватить побочный результат.

Иными словами, побочные результаты — это тоже акт взаимодействия традиций.

Рассмотрим в качестве иллюстрации историю открытия закона Кулона, известного каждому со школьной скамьи. Интересно и поучительно при этом обратить внимание на то, насколько различны и противоречивы те картины, которые предлагают нам по этому поводу историки физики.

Известный специалист по теории упругости и сопротивлению материалов С.П.Тимошенко пишет о Ш. Кулона следующее: «Он изобрел для измерения малых электрических и магнитных сил весьма чувствительные крутильные весы, а в связи с этим исследовал прочность проволоки на кручение».
Получается так, что Ш. Кулон с самого начала исходил из задачи измерения сил взаимодействия электрических зарядов и в поисках решения этой проблемы каким-то чудом изобрел новый прибор. Что касается его работ по теории упругости, то они представляют собой нечто вторичное и целиком вытекают из идеи построения крутильных весов. Перед нами пример непостижимого для окружающих гениального озарения. Ни о каких программах здесь не может быть и речи.

Но так ли это?

Обратимся к некоторым фактам биографии Ш. Кулона. По образованию он — инженер. Поступив на военную службу, Ш. Кулон попадает на остров Мартинику, где на протяжении девяти лет принимает участие в строительных работах. Свой опыт инженера он обобщает в трактате, представленном в 1773 г. во Французскую Академию наук. Трактат посвящен строительной механике и изучению механических свойств материалов. Вернувшись во Францию, Ш. Кулон и здесь работает в качестве инженера и продолжает свои научные изыскания в этой области. Уже в 1777 г. он публикует исследования об измерении кручения волос и шелковых нитей, а позднее, в 1784 г. присоединяет к ним мемуар о кручении металлических проволок. Две последние даты очень важны, если учесть, что первая работа Ш. Кулона, посвященная его знаменитому закону, появилась только в 1785 г., т.е. через восемь лет после того, как он занялся кручением нитей. О чем все это говорит?

Прежде всего о том, что исследования Ш. Кулона по теории упругости носили совершенно самостоятельный характер и никак не вытекали из идеи измерения электрических или магнитных взаимодействий. Ш. Кулон — инженер и по интересам, и по роду работы, а его исследования целиком укладываются в рамки традиции или, если угодно, парадигмы строительной механики и теории упругости. Здесь, кстати, все, что он делает вполне естественно и понятно и никак не нуждается в предположении гениального озарения.

Итак, по крайней мере одна научная программа в работах Ш. Кулона налицо.

Как же осуществляется переход к исследованиям в области электричества?

В «Истории физики» Б. И. Спасского читаем следующее: «Для определения силы взаимодействия между электрическими зарядами Кулон по-
строил специальный прибор — крутильные весы. Конструируя этот прибор, Кулон применил ранее открытый им закон пропорциональности между углом закручивания упругой нити и моментом силы».

Б.И.Спасский, в отличие от С.П.Тимошенко, не считает, что исследования Ш. Кулона по теории упругости носили вторичный характер и вытекали из задачи построения крутильных весов. Создавая эти весы, Кулон просто использовал уже открытый им ранее закон закручивания проволоки. Б.И.Спасский, однако, как и С.П.Тимошенко, настаивает, что весы построены специально для электрических измерений.

Но так ли это?

Парадокс заключается в том, что крутильные весы Ш.Кулону вовсе не надо было специально строить, они у него уже были задолго до того, как он приступил к определению силы взаимодействия между зарядами.

Весы уже были, их надо было только увидеть.

Действительно, та установка, которую Ш. Кулон использовал при изучении крученя нитей — это и есть крутильные весы. Ее нужно было только переосмыслить. В общем плане это выглядит так: изучив влияние явления Х на явление Y, мы получаем возможность использовать Y как прибор при изучении Х.

Но Ш. Кулон мог и не опираться на этот общий принцип, ибо у него был конкретный образец аналогичного функционального переосмысления экспериментальной установки в работах основателя теории упругости Роберта Гука. Исследуя деформацию спиральных и винтовых пружин, Р.Гук тут же осознает свои результаты как изобретение особых «философских весов», необходимых для того, «чтобы определять вес любого тела без применения гирь».

Иными словами, и здесь Ш.Кулон работал в рамках определенной традиции.

Итак, крутильные весы не нужно было специально ни изобретать, ни строить.

Кулону требовалось только понять, что, решая одну задачу, он, сам того не желая, решил и вторую.

Определяя, как угол закручивания нити зависит от действующей силы, он получил тем самым и метод измерения сил.

Но тут мы как раз и подходим к самому интересному. До сих пор Кулон работал, как мы уже отмечали, в традиции теории упругости и сопро-
тивления материалов. Однако переосмыслить свою экспериментальную установку и осознать ее как весы, он смог только благодаря другой традиции, традиции измерения. Эта последняя определяет совершенно новую точку зрения на происходящее, она только и ждет, чтобы подхватить побочный результат предыдущей работы.

Но переосмыслив свою экспериментальную установку как весы, Кулон точно вступает на широкую столбовую дорогу, на которой можно встретить людей с очень разными приборами и разными задачами.

Среди того, что их объединяет, нам важно следующее: методы измерения в широких пределах безразличны к конкретному содержанию тех дисциплин, где они применяются. Неудивительно поэтому, что традиция измерения сразу же уводит Ш. Кулона за пределы его первоначальной сравнительно узкой области.

«Кулон, по-видимому, интересовался не столько электричеством, сколько приборами, — пишет Г. Липсон. — Он придумал чрезвычайно чувствительный прибор для измерения силы... и искал возможности его применения».

Как мы уже видели, Ш. Кулону ничего не надо было «придумывать», но в остальном с Г. Липсоном можно согласиться. Получив в свои руки метод измерения малых сил, Ш. Кулон сразу становится как бы «космopolitanом» и начинает путешествовать из одной сферы экспериментального исследования в другую.

Правда, и теперь он не сразу приступает к проблемам теории электричества, но начинает с исследования трения между жидкостями и твердыми телами. Это еще раз подчеркивает, что измерение силы взаимодействия между зарядами никогда не было его исходной задачей — ни при изучении кручения нитей, ни при «построении» крутильных весов.

Не метод строился здесь под задачу, а, наоборот, наличие метода требовало поиска соответствующих задач.

Подведем некоторые итоги. Мы пытались показать, что Ш. Кулона вовсе не посещало гениальное озарение. Скорее наоборот, он все время двигался как бы по протопутным дорогам. Мы при этом отнюдь не хотели как-то принизить его достижения в области сопротивления материалов и теории упругости. Он прочно вошел в историю этих дисциплин как талантливый исследователь.
Но он здесь продолжатель уже существующих традиций, которые были заложены еще Галилео Галилеем и Робертом Гуком.

Может быть, в развитии учения об электричестве он стоит совершенно обособленно?

Оказывается, что и это не так.

К формулировкам, близким к закону Ш.Кулона, чисто теоретически подходили Ф.Эпинус (1759 г.), Дж.Пристли (1771 г.), Г.Кавендиш (1773 г.). Иногда этот закон даже называют законом Кулона—Кавендиша. И в то же время очевидно, что Ш.Кулон не помещается полностью ни в одной из этих традиций, и это выдигает его фигуру на совершенно особое место.

Закон Кулона не мог быть вскрыт в рамках парадигмы теории упругости, крутильные весы не могли появиться в рамках учения об электричестве.

Своеобразие ситуации в том и состоит, что Ш. Кулон оказался в точке взаимодействия указанных традиций, соединив их неповторимым образом.

Путь Ш. Кулона — это как бы движение по проторенным дорогам, но с пересадками. Сначала это дорога сопротивления материалов и теории упругости, затем традиция измерения сил. «Пересадка» возможна благодаря появлению особого объекта (в данном случае — это экспериментальная установка при исследовании кручения), который может быть осмыслен и использован в рамках как одной, так и другой традиции работы.

(231)

Но не так ли и железнодорожная станция, лежащая на пересечении нескольких дорог?

Такие полифункциональные объекты, подобные многоликим Янусам, мы будем в дальнейшем называть инверсивными. Очевидно, что большинство вещей, которые нас окружают, могут быть включены в деятельность различным образом, в рамках разных традиций и в этом смысле являются инверсивными объектами. Акт их функционального переосмысления мы будем называть актом инверсии. Такой акт — это и есть «пересадка». И как на узловых станциях можно встретить самых разных людей, которых нигде в другом пункте не увидишь вместе, так и инверсивные объекты — это точки взаимного проникновения и обогащения разных традиций работы.

Т. Кун рассматривает Ш.Кулона как представителя парадигмы теории электричества. Об этом свидетельствует целый ряд мест в его «Структуре научных революций». «До того, как Кулон смог сконструировать свой
прибор и с помощью этого прибора произвести измерения, — пишет Т.Кун, — он использовал теорию электричества для того, чтобы определить, каким образом его прибор может быть построен». Это примерно так же точка зрения, что и у С.П.Тимошенко: крутильные весы целенаправленно конструируются для измерения взаимодействия электрических зарядов. Мы уже видели, что это противоречит чisto фактической стороне дела.

Но суть не только в приборе.

Можно, вероятно, утверждать, что в теории электричества Кулон вообще был только «проездом».

Историк физики Марио Льоцци пишет по этому поводу следующее: «Таким образом, 48-летний французский инженер, никогда специально не занимавшийся электричеством и магнетизмом (известна лишь одна его заметка о способе намагничивания железных стрелок), в качестве побочного занятия проводил исследования, обессмертившие его имя».

Это верно, хотя термин «побочное занятие» недостаточно полно характеризует существо дела.

Крайне любопытна дальнейшая судьба закона Кулона. Его открытие, как подчеркивает Я.Г.Дорфман, «не внесло... на первых порах никаких новых результатов в развитие учения об электричестве. Плоды этого важного открытия обозначились лишь при-

мерно через 25 лет, когда Пуассон с помощью этого закона решил математическую задачу о распределении заряда на различных проводниках и системах проводников (1811 г.)».

Что же произошло?

Дело в том, что закон Кулона тоже представляет собой своеобразный инверсивный объект.

— С одной стороны, он имеет конкретное физическое содержание и в этом плане тесно связан с традицией изучения именно электрических явлений.

— Но, с другой стороны, по своей математической форме он совпадает с законом всемирного тяготения Ньютона.

Именно этот акт инверсии и осуществил С.Пуассон, после чего в электростатику хлынули математические методы теоретической механики, которые разрабатывались до этого в трудах Эйлера, Лагранжа и Лапласа. Это методы математической теории потенциала. Пуассон в своей работе
1811 г. как раз и осуществляет распространение математического понятия потенциала на электрическое и магнитное поля.

«Весь этот быстрый прогресс теории электричества, — пишет Марио Льоцци, — был бы невозможен без предварительного развития идей и аналитических методов теоретической механики».

И здесь, следовательно, мы тоже имеем дело с взаимодействием различных традиций, и С.Пуассон как бы осуществляет «Пересадку» с одного поезда на другой. Пример показывает, что недостаточно просто получить какой-то результат, недостаточно сделать открытие, важно, чтобы сделанное было подхвачено какой-либо достаточно мощной традицией.

МЕТАФОРИЧЕСКИЕ ПРОГРАММЫ
Нередко новации в развитии науки бывают обусловлены переносом образцов из одной области знания в другую в форме своеобразных метафор.

Поясним это сначала на простом бытовом примере.

Представьте себе добросовестного канцелярского служаку, который на каждого посетителя заполняет карточку с указанием фамилии, года и места рождения, национальности, родителей... Его работа стандартна и традиционна, хотя каждый раз он имеет дело с новым человеком и никого не опрашивает дважды. И вот неожиданно его переводят из канцелярии в библиотеку и предлагают составить каталог с описанием имеющихся книг.

Предположим, что наш герой абсолютно не знаком с библиотечным делом и не получил никаких инструкций. Может ли он и на новом месте следовать прежним образцам?

Но разве не то же самое происходит тогда, когда по образцу одной научной дисциплины или одной теории строятся науки или теории-близнецы? Вспомним пример с экологией, которая, возникнув как биологическая дисциплина, уже породила немало таких близнецов: экология преступности, экология народонаселения, культурная экология... Разве выражение «экология преступности» не напоминает метафоры типа «дыхание эпохи» или «бег времени»?

Проанализируем еще один, несколько более сложный пример.

В развитии геоморфологии, науки о формах рельефа, огромную роль сыграла теория эрозионных циклов В.Дэвиса. Согласно этой теории, все разнообразные формы рельефа образуются под воздействием двух основных факторов — тектонических поднятий суши и обратно направленных процессов эрозии. Не вызывает сомнения тот факт, что В.Дэвис работал в определенных традициях.

В каких именно?

На этот вопрос уверенно и однозначно отвечает известный географ и историк географии К.Грегори. «Образцом здесь, — пишет он, — служила
концепция Дарвина о развитии коралловых островов, выдвинутая в 1842 г.». Итак, одна теория строится по образцу другой.

(234)

И действительно, есть явное сходство между дарвиновской теорией коралловых рифов и концепцией эрозионных циклов Дэвиса.

— У Ч. Дарвина все определяется соотношением двух процессов: медленного опускания морского дна, с одной стороны, и роста кораллов, с другой.

— У В. Дэвиса — поднятие суши, с одной стороны, и процесс эрозионного воздействия текучих вод на возвышенный участок, с другой.

В обоих случаях два фактора, как бы противоборствуя друг другу, определяют тем самым различные стадии развития объекта.

— У Ч. Дарвина вследствие опускания суши на поверхности океана остается только одна коралловая постройка — атолл.

— У В. Дэвиса вследствие эрозии — почти плоская равнина — пенеплен.

Перед нами один и тот же принцип построения модели, использованный при изучении очень разных явлений.

Одна теория — это метафорическое истолкование другой.

Стоит задать вопрос: а как возникла теория образования коралловых островов Дарвина?

Обратимся к его собственным воспоминаниям.

«Не один другой мой труд, — пишет Ч.Дарвин, — не был начат в таком чисто дедуктивном плане, как этот, ибо вся теория была придумана мною, когда я находился на западном берегу Южной Америки, до того, как я увидел хотя бы один настоящий коралловый риф... Правда, нужно заметить, что в течение двух предшествующих лет я имел возможность непрерывно наблюдать то действие, которое оказывали на берега Южной Америки перемежающееся поднятие суши совместно с процессами денудации и образования осадочных отложений. Это с необходимостью привело меня к длительным размышлениям о результатах процесса опускания [суши], и было уже нетрудно мысленно замес-

(235) тить непрерывное образование осадочных отложений ростом кораллов, направленным вверх».

Обратите внимание, Ч.Дарвин при построении своей теории идет тем же самым путем, каким впоследствии пойдет В.Дэвис.

kupnov_v_i_i_dr_filosofiya_i_metodologiya_nauki

210
Опять две сходные теоретические концепции:
— опускание дна океана и рост кораллов в одном случае,
— опускание суши и накопление осадков в другом.
Однако общая идея, лежащая в основе теории образования коралловых островов принадлежит не Ч. Дарвину. Путешествуя на «Бигле», он в качестве настольной книги возил с собой «Принципы геологии» Ч. Лайеля, где даже на обложку было вынесено вошедшее потом во все учебники изображение колонн храма Юпитера-Сераписа со следами поднятий и погружений.

(236)

XI. НАУЧНЫЕ РЕВОЛЮЦИИ

Революции — это вид новаций, которые отличаются от других видов не столько характером и механизмами своего генезиса, сколько своей значимостью, своими последствиями для развития науки и культуры.
Поскольку речь идет об оценках, то очевидно, что здесь нет точных границ, и всегда возможны споры на тему о том, является ли не является та или иная новация революцией.
Однако не вызывает сомнений, что,
— во-первых, научные революции связаны с перестройкой основных научных традиций,
— а, во-вторых, они, как правило, затрагивают мировоззренческие и методологические основания науки, изменяя нередко сам стиль мышления.
В этом плане, научные революции могут по своей значимости выходить далеко за рамки той конкретной области, где они произошли. Можно поэтому говорить о частнонаучных и общенаучных революциях, а в последнем случае — о специальнонаучных и общенаучных аспектах одной и той же революции.
Мы выделим и рассмотрим три вида научных революций, которые нередко тесно друг с другом связаны:
построение новых фундаментальных теорий внедрение новых методов исследования открытие новых «миров»

1. НОВЫЕ ТЕОРЕТИЧЕСКИЕ КОНЦЕПЦИИ
Построение новых фундаментальных теорий — это наиболее известный тип научных революций.
Давно принято говорить о революции, совершенной Н.Коперником, или о ньютонианской революции.

Именно со сменой фундаментальных теоретических концепций связывает свое представление о революциях Т.Кун. И с этим нельзя не согласиться, ибо и теория относительности Эйнштейна, и квантовая механика знаменуют собой кардинальные сдвиги в нашем познании мира. При анализе перечисленных выше теоретических революций бросаются в глаза две основных особенности, которые мы уже отмечали для революций вообще.

— Речь идет о центральных для той или иной области теоретических концепциях, определяющих в данный период лицо науки.

— Революция касается не только специально-научных представлений, но затрагивает мировоззренческие и методологические проблемы.

Возникновение квантовой механики — это яркий пример общенаучной революции, ибо ее значение выходит далеко за пределы физики. Возьмем, к примеру, гуманитарные науки. Казалось бы, какая здесь может быть связь с миром элементарных частиц, где царят квантово-механические законы?

Но вот небольшой отрывок из записей одного из крупнейших наших отечественных гуманитариев М.М.Бахтина: «Экспериментатор составляет часть экспериментальной системы (в микрофизике). Можно сказать, что и понимающий составляет часть понимаемого высказывания, текста (точнее, высказываний, их диалога, входит в него как новый участник)».

Что это как не отзвук квантово-механических представлений?

На уровне аналогий или метафор они проникли и в гуманитарное мышление.

Глубину воздействия квантовой механики на наше мировосприятие трудно переоценить. В порядке иллюстрации обратим внимание на один из аспектов этого воздействия. Можно с уверенностью сказать, что человечество уже много тысячелетий практически или теоретически придерживается принципов элементаризма. Мы интуитивно уверены, что мир состоит из частей,

что каждую вещь можно разложить на элементы, а затем из этих элементов собрать. Конечно, опыт биологии этому противоречит, но жизнь воспринимается как очень специфическое явление, особенности которого никто не собирается обобщать.
Но вот мы открываем современный курс квантовой механики, написанный А. Садбери, и читаем:

«Квантовая механика в принципе отрицает возможность описания мира путем деления его на части с полным описанием каждой отдельной части — именно эту процедуру часто считают неотъемлемой характеристикой научного прогресса».

Не значит ли это, что квантовая механика посягает на нашу тысячелетнюю интуицию, на наш здравый смысл?

Обеим выделенным выше характеристикам целиком отвечает дарвиновская революция.

— Во-первых, очевидно, что эволюционная концепция занимает центральное место в биологии.

Вот высказывание по этому поводу авторитетных современных биологов Н. В. Тимофеева-Ресовского, Н. Н. Воронцова и А. В. Яблокова: «Любое биологическое исследование оказывается оправданным лишь в том случае, если оно имеет более близкий или более далекий, но обязательно эволюционный «выход»».

— Во-вторых, вряд ли следует доказывать огромное мировоззренческое воздействие концепции Дарвина, которая, помимо всего прочего, коренным образом изменила наши представления о месте человека в Природе.

Нельзя не остановиться на методологическом воздействии теории Дарвина, которая не только решительным образом повернула мышление большинства ученых в сторону эволюционизма, но и породила немало своих «близнецов» в других областях знания.

Примером может служить лингвистика.

«Законы, установленные Дарвином для видов животных и растений, — писал в 1869 г. выдающийся лингвист А. Шлейхер, — применимы, по крайней мере в главных чертах своих, и к организации языков».

Дальнейшие рассуждения А. Шлейхера показывают, что теория Дарвина выступает у него как метафорическая программа. Вспомним нашего канцелярского чиновника, попавшего в библиотеку.

«Виды одного рода, — пишет А. Шлейхер, — у нас называются языками какого-либо племени; подвиды — у нас диалекты или наречия известного языка; разновидностям соответствуют местные говоры или вто-

(239)
ростепенные наречия; наконец, отдельным особым — образ выражения отдельных людей, говорящих на известных языках».

Примером частнонаучной революции может служить революция, совершенная В. Дэвисом в геоморфологии, которая не получила общекультурного резонанса, что отнюдь не уменьшает ее значение для физической географии.

В рамках своей области теория Дэвиса имела далеко не только специальное, но и большое методологическое значение, ибо воспринималась как выступление против эмпириизма тогдашней географии.

«Ничто не кажется мне более очевидным, — писал В. Дэвис, — чем то, что география слишком долго страдала от неиспользования таких способов мышления, как воображение, изобретение, дедукция и другие аналогичные методы, которые помогают найти поддающиеся проверке объяснения географическим явлениям».

Как мы уже сказали, построение новых теорий — это наиболее известный тип революции. Но существуют и другие принципиальные сдвиги в науке, не менее значимые и по своим специальнонаучным, и по своим мировоззренческим последствиям.

2. НОВЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Новые методы, как отмечают сами ученые, часто приводят к далеко идущим последствиям:

и к смене проблем, и к смене стандартов науочной работы, и к появлению новых областей знания.

Укажем хотя бы очевидные примеры:

появление микроскопа в биологии, оптического телескопа и радиотелескопа в астрономии методов «воздушной археологии» ...

Изобретение микроскопа и распространение его в XVII в. с самого начала будоражило воображение современников. Хотя приборы были очень несовершенны, это было окно для наблюдения живой природы, которое позволило первым великим микроскопистам — Р. Гуку, Н. Грю, А. ван Левенгук, М. Мальпиги — сделать их бессмертные открытия.

Оглядываясь на XVII в., известный историк биологии В. В. Лункевич назвал его эпохой «завоеваний микроскопа».

Он дает выразительный портрет психологического состояния Роберта Гука, охваченного ажиотажем новых исследований: «Нужно только
представить себе человека умного, образованного, любознательного и темпераментного во всеоружии первого микроскопа, т.е. инструмента, который почти никто до него не пользовался и который дает возможность открыть совершенно новый, никем до того не виданный и никому не ведомый мир; нужно только перевоплотиться в такого человека, чтобы не только представить себе ясно, но и почувствовать и настроение Гука, и торопливую пестроту его наблюдений. Он бросался на все, что можно поместить на столик, под объектив микроскопа; пусть это будет кончик тоненькой иглы или острье бритвы, шерстяная, льняная или шелковая нить, крошечные стеклянные шарики, радугой играющие под линзой микроскопа, частицы тонкого песка, осадок в моче, зола растений или кристаллики различных минералов — не важно: все это ново, интересно, полно неожиданностей, чревато возможностью засыпать мир тысячи маленьких открытий...

На все это можно посмотреть и в более широком, принципиальном плане: разве нельзя всю историю биологии разбить на два этапа, разделенные появлением и внедрением микроскопа. Без микроскопа не было бы целых больших и фундаментальных разделов биологии (микробиологии, цитологии, гистологии...), во всяком случае в том виде, как они сейчас существуют.

Нечто аналогичное происходило и в геологии. Во второй половине XIX столетия применение микроскопа для исследования горных пород приводит к революционным изменениям в петрографии.

Вот как этот решительный сдвиг описывает выдающийся русский петрограф Ф.Ю. Левинсон-Лессинг в 1916 г.:

В зависимости от введения новых методов исследования или усовершенствования прежних и от успехов сопредельных областей знания, все отрасли естествознания XIX столетия эволюционировали и продолжают эволюционировать. Вместе с приемами исследования расширяются и те проблемы, которые ставит себе данная наука, или появляются новые перспективы, возникают новые задачи, — и физиономия науки постепенно видоизменяется: то, что недавно еще было новым, оказывается уже устаревшим и заменяется новыми воззрениями, которых ожидает та же судьба. Этот процесс развития совершается в общем постепенно, но бывают моменты быстрого движения вперед, как бы скачки, аналогично явлению сальтации в общем процессе медленной эволюции органического мира. Таким значительным скачком в петрографии явилось введение микроско-
пического метода исследования. Быть может, нет другой науки, в которой можно было бы указать такой резкий перелом, как тот, который совершился в начале шестидесятых годов прошлого столетия в петрографии».

Нетрудно видеть, что речь идет не только о революции в петрографии, которую Ф. Ю. Левинсон-Лессинг оценивает как столь резкий перелом, что ему нет равных в других науках, — вопрос ставится шире: всю эволюцию естествознания XIX столетия автор ставит в зависимость от развития и усовершенствования методов исследования.

Во второй половине XX столетия начинается бурный подъем астрономии, связанный с появлением радиотелескопа. Для астрофизиков ситуация обновления очевидна.

«Революция в астрономии началась примерно в 1950 г., и с тех пор ее триумфальное шествие не прекращается», — считает американский астрофизик П. Ходж. Аналогичная оценка — у академика В. Л. Гинзбурга:

«Астрономия после второй мировой войны вступила в период особенно блистательного развития, в период «второй астрономической революции» (первая такая революция связывается с именем Галилея, начавшего использовать телескопы)... Содержание второй астрономической революции можно видеть в процессе превращения астрономии из оптической во всеволновую».

И здесь, как видите, периодизация связана с методами эмпирического исследования: первая революция — оптический телескоп, вторая — радиотелескоп.

Перейдем к археологии. Один из самых смелых шагов был сделан ею во время первой мировой войны: шаг, который позволил археологу, как говорится, стать птицей — благодаря аэроплану и аэрофотосъемке, что привело к целому ряду необычных открытий и важных обобщений. С высоты открылись такие следы прошлого, наблюдать которые не могли и мечтать самые прозорливые наземные исследователи.

Известный английский археолог и востоковед Лео Дойель пишет:

«Воздушная археология революционизировала науку изучения древностей, может быть, даже в большей степени, чем открытие радиоуглеродного метода датировки. По словам одного из ее основателей, вклад, внесенный воздушной разведкой в археологические изыскания, можно сравнить с изобретением телескопа в астрономии».

Здесь опять подчеркивается революционизирующая роль новых методов: радиоуглеродный метод датировки, методы аэрофотосъемки.
У нас нет возможности увеличивать количество примеров, но очевидно, что речь должна идти не только о методах наблюдения или эксперимента, но обо всем арсенале методических средств вообще.

— Не меньшее значение, например, могут иметь методы обработки и систематизации эмпирических данных — вспомним хотя бы роль картографии для наук о Земле или роль статистических методов в социальных исследованиях...

— Огромное революционизирующее значение имеет и развитие чisto теоретических методов — например, перевод естествознания на язык математического анализа.

Здесь надо вспомнить не только труды И.Ньютона, но и кропотливую работу Л.Эйлера, Ж.Лагранжа, У.Гамильтона и др. Без этой двухвековой подготовки невозможна была бы и эйнштейновская научная революция.

Вообще проникновение математических методов в новые области науки всегда приводит к их революционной пере-

стройке, к изменению стандартов работы, характера проблем и самого стиля мышления.

Но главное, что бросается в глаза и что хотелось бы подчеркнуть, — если в нарисованной Т.Куном глобальной картине узловыми точками являются новые теоретические концепции, то в такой же степени можно организовать весь материал истории науки, включая и естествознание, и науки об обществе, вокруг принципиальных скачков в развитии методов. Качественная перестройка методического арсенала — это своеобразная координационная сетка, не менее удобная, чем перечень куновских парадигм.

3. ОТКРЫТИЕ НОВЫХ «МИРОВ»

Перейдем теперь к фактам другого типа. Обычно, характеризуя ту или иную науку, мы прежде всего интересуемся тем, что именно она изучает.

Это не случайно. Выделение границ изучаемой области или, иными словами, задание объекта исследования — это достаточно существенный наукообразующий параметр. Не удивительно, что возникновение новых дисциплин очень часто связано как раз с обнаружением каких-то ранее неизвестных сфер или аспектов действительности.

Не вызывает сомнений, что это тоже своеобразные научные революции, которые мы будем называть открытием новых миров. Перед исследователем в силу тех или иных обстоятельств открывается новая область не-
познанного, мир новых объектов и явлений, у которых нет еще даже имени. Далее в ход идет весь арсенал уже имеющихся средств, методов, теоретических представлений, исследовательских программ... Новой является сама область познания.

Простейший пример — великие географические открытия, когда перед изумленными путешественниками представали новые земли, акватории, ландшафты, неведомые культуры...

Нельзя недооценивать роль этих открытий в истории европейской науки. Но не менее, а, может быть, и более значимо появление в сфере научного изучения таких объектов, как

мир микроорганизмов и вирусов,
мир атомов и молекул,
мир электромагнитных явлений,
мир элементарных частиц...

Список такого рода можно расширить и сделать более детальным.

Открытие явления гравитации,
открытие других галактик,
открытие мира кристаллов,
открытие радиоактивности...

Все это принципиальные шаги в расширении наших представлений о мире, которые сопровождались и соответствующими изменениями в дисциплинарной организации науки. И в такой же степени, как новые методы, новые миры тоже образуют своеобразную координационную сетку, позволяющую упорядочить и организовать огромный материал истории науки.

Следует подчеркнуть, что открытие нового мира и определение его границ — это не одноактное событие.

Понимание того, что в поле зрения не отдельные интересные явления, а именно новый мир, занимает иногда целые годы. Но еще Т.Кун отмечал, что научные революции растянуты во времени.

Характерный пример — появление в науке такого нового мира, как вирусы.

В 1892 г. Д. И. Ивановский обнаруживает удивительное явление: способность возбудителя мозаичной болезни табака проходить сквозь фарфоровый фильтр, задерживающий бактерии. Метод фильтрования со-
вершенно традиционен; исследователя отличает только исключительная тщательность в работе. Позднее, в 1899 г., результаты Д.И.Ивановского подтверждает М.Бейеринк, который и предложил для обозначения фильтрующегося инфекционного начала термин «вирус» (лат. virus — яд). Осознание того, что вирусы — это новый мир, дающий основание для выделения особого свода знаний — вирусологии, пришло позднее в связи с трудами Ф.Туорта (1915 г.) и Ф. д’Эрелля (1917 г.). Иными словами, лишь через несколько десятилетий научного труда выяснилось, что перед нами целое семейство неклеточных форм жизни, насчитывающее сегодня в общей сложности около 800 видов.

Открытие новых миров — это вовсе не прерогатива естественных наук, аналогичный вклад сюда вносят и науки об обществе.

На это, к сожалению, обращают обычно гораздо меньше внимание, хотя революционизирующее общекультурное значение таких открытий не вызывает сомнений.

Думается, например, что уже появление «эйдосов» Платона — это открытие нового мира, новой реальности, способ бытия которой вызывает обсуждения до сих пор.

Был обнаружен, в частности, фундаментальный факт: наряду с реальными геометрическими фигурами, которые могут быть нарисованы на песке, существуют еще какие-то другие, применительно к которым мы и формулируем свои теоремы.

Нужна, вероятно, целая книга, чтобы проследить увлекательные перипетии дальнейшего развития этой мысли.

Но главное в развитии наук об обществе — это открытие «прошлого» человечества, открытие «прошлого» как особого мира и объекта познания.

Огромное общекультурное значение имела расшифровка Ж. Ф. Шампольоном египетской письменности.

«Исследования Шампольона, — подчеркивает известный историк И.Г.Лившиц, комментируя труд последнего «О египетских иероглифах», — заложили основу новой науки, расширявшей нашу историческую перспективу на целые тысячелетия и раскрывшей перед нами новый, почти совершенно неизвестный дотоле мир».

Нельзя не вспомнить в связи с этим слова А.С.Пушкина о Н.М.Карамзине, имея в виду создание «Историю государства Российско-
го»: «Древняя Россия, казалось, найдена Карамзиным, как Америка — Колумбом».

Сравнение удачно схватывает изоморфизм познавательных ситуаций: открытие прошлого вполне сопоставимо с открытием новых земель, культур и народов.

(246)

Революционным шагом вперед было и открытие Льюисом Морганом доисторического прошлого человечества.

Сам Л. Морган в предисловии к своему труду «Древнее общество» (1877 г.) писал: «Глубокая древность существования человечества на земле окончательно установлена. Кажется странным, что доказательства этого были найдены только в последние тридцать лет и что современное поколение — первое, которое признало столь важный факт».

Современному человеку уже трудно оценить степень революционности этих открытий, трудно понять их кардинальное воздействие на все мировосприятие ученых прошлого века. Не случайно некоторые события из истории палеоантропологии сейчас воспринимаются как курьезные.

Вот один из таких курьезов, связанный с находкой черепа «неандертальского человека». Случай этот как весьма поучительный приводит в своей книге известный американский палеоантрополог Д. Джохансон.

Найденный в 1856 г. в долине Неандера череп был гораздо толще, длиннее и уже, чем у современного человека, с массивными надбровными дугами. Находку начали энергично изучать немецкие анатомы.

— «Этот череп принадлежал пожилому голландцу», — сказал д-р Вагнер из Геттингена.

— «Нет, — заявил д-р Майер из Бонна, — это череп русского казака, который в погоне за отступающей армией Наполеона отбился от своих, забрел в пещеру и умер там».

— Французский ученый Прюнер-Бей придерживался иного мнения: «Череп принадлежал кельту, несколько напоминающего современного голландца, с мощной физической, но низкой умственной организацией».

— Окончательный приговор произнес знаменитый Рудольф Вирхов. Он заявил, что все странные особенности неандертальца связаны не с его примитивностью, а с патологическими деформациями скелета, возникшими в результате перенесенного в детстве рахита, старческого артрита и нескольких хороших ударов по голове.
Оставался еще вопрос о древности находки. Ученые пришли к единодушному мнению, что неандерталец, возможно, ходил по земле во времена Наполеона...

В основе данного курьеза лежало, конечно, отсутствие надежного метода датировки ископаемых остатков. Но поучительно и то, с каким трудом человеческое сознание осваивает и само представление о глубине прошлого, в которое ему предстоит проникнуть.

4. РЕВОЛЮЦИИ И ТРАДИЦИИ

Выше уже отмечалось, что революции как вид новаций выделяются не по особенностям своего генезиса, а исключительно по своей значимости, по характеру своего воздействия на дальнейшее развитие науки и культуры.

Поэтому механизмы революций и их отношение к традициям те же самые, что и в случае новаций вообще.

Покажем это на двух сравнительно простых примерах, первый из которых в равной степени можно рассматривать и как внедрение нового метода, и как открытие нового мира.

Вот описание первых шагов в развитии радиоастрономии, предложенное О.Струве и В.Зебергом:

«Радиоастрономия зародилась в 1931—1932 гг., когда в процессе экспериментов по исследованию высокочастотных радиопомех в атмосфере (высокочастотных для обычного радиовещания, но низкочастотных с точки зрения радиоастрономии) Янский из лаборатории телефонной компании «Белл» обнаружил, что «полученные данные... указывают на присутствие трех отдельных групп шумов: группа 1 — шумы от местных гроз; 2 — шумы от далеких гроз и группа 3 — постоянный свистящий шум неизвестного происхождения». Позднее К.Янский выяснил, что неизвестные радиоволны приходят от центра Млечного Пути.

Для того чтобы стать революцией, новый метод должен был проникнуть в астрономию, но астрономы не обратили на работы К.Янского почти никакого внимания. Успеха добивается его последователь радиоинженер Г.Рибер, который строит около своего дома первый параболический радиотелескоп, изучает астрофизику и вступает в личные контакты с астрономами. Только публикация в 1940г. первых результатов Рибера послужила толчком к объединению усилий астрономов и радиоинженеров.
С аналогичной ситуацией мы сталкиваемся у истоков воздушной археологии.

Один из пионеров этого метода — О. Кроуфорд считает датой его рождения 1922 г.

Решающий эпизод состоял в следующем: Кроуфорда попросили посмотреть несколько аэрофотоснимков, сделанных офицерами британских BBC; военным показалось, что на снимках есть «что-то археологическое». Это «археологическое» было прежде всего древними межевыми валами, исследованием которых О. Кроуфорд тщетно пытался заниматься еще в юности. «Я хорошо помню, — пишет он, — как все произошло. Кларк-Холл показал мне свои снимки. Они были покрыты прямоугольными белыми фигурами, которые сразу же напомнили мне то, что я тщетно пытался нанести на карту около десяти лет назад. Здесь, на этих нескольких фотографиях, был ответ на мучивший меня вопрос».

Трудно заподозрить военных в недостаточной традиционности. Очевидно, что они вовсе не собирались заниматься археологией. Археологические данные появляются на аэрофотоснимках столь же неожиданно, как космические источники радиоволн в исследованиях радиоинженера К. Янского. Традиционен и О. Кроуфорд, когда узнает на фотоснимках давно знакомые ему в принципе объекты.

Все традиционны, и тем не менее происходит революция. Все полностью соответствует уже рассмотренной нами схеме: побочные результаты, полученные в рамках одной традиции, подхватываются другой, которая точно стоит на страже.

Впрочем, иногда эта схема нарушается, и побочный результат фиксируется в той же самой традиции работы, коренным образом, однако, изменения ее функции. Это имеет место тогда, когда побочный результат стоит в неожиданной невозможности реализовать привычный способ деятельности, привычный способ решения задачи.

Примером может служить открытие Д. И. Ивановского.

Изучая мозаичную болезнь табака и используя традиционный для того времени метод фильтрования, Ивановский по-

лучает совершенно неожиданный результат: метод не срабатывает, тщательно отфильтрованный сок больного растения сохраняет свои заразные свойства. «Случай свободного прохождения заразного начала через бактериальные фильтры... — пишет Д. И. Ивановский, — представлялся совер-
шенно исключительным в микробиологии». Д.И.Ивановский настолько поражен, что предполагает первоначально, что фильтруется не сам возбудитель, а яд, растворенный в соке больного растения.

Перед нами типичный случай побочного эффекта. Однако закрепление этого эффекта происходит в той же традиции, видоизменяя, разумеется, ее функции: метод фильтрования становится теперь методом обнаружения «фильтрующихся вирусов».

(250)

XII. ПРИРОДА ФУНДАМЕНТАЛЬНЫХ НАУЧНЫХ ОТКРЫТИЙ

Среди многообразных видов научных открытий особое место занимают фундаментальные открытия, изменяющие наши представления о действительности в целом, т.е. носящие мировоззренческий характер.

1. ДВА РОДА ОТКРЫТИЙ

А. Эйнштейн в свое время писал, что физик-теоретик «в качестве фундамента нуждается в некоторых общих предположениях, так называемых принципах, исходя из которых он может вывести следствия. Его деятельность, таким образом, разбивается на два этапа. Во-первых, ему необходимо отыскать эти принципы, во-вторых, — развивать вытекающие из этих принципов следствия. Для выполнения второй задачи он основательно вооружен еще со школы. Следовательно, если для некоторой области и, соответственно, совокупности взаимосвязей первая задача решена, то следствия не заставят себя ждать. Совершенно иного рода первая из названных задач, т.е. установление принципов, могущих служить основой для дедукции. Здесь не существует метода, который можно было бы выучить и систематически применять для достижения цели».

Мы будем заниматься главным образом обсуждением проблем, связанных с решением задач первого рода, но для начала уточним наши представления о том, как решаются задачи второго рода.

Представим себе следующую задачу. Имеется окружность, через центр которой проведены два взаимно перпендикулярных диаметра. Через точку А, находящуюся на одном из диаметров на расстоянии 2/3 от центра окружности О, проведем прямую, параллельную другому диаметру, а из точки B — пере-

(251)
сечения этой прямой с окружностью опустим перпендикуляр на второй диаметр, обозначив их точку пересечения через К. Нам необходимо выразить длину отрезка АК через функцию от радиуса.

Как мы будем решать эту школьную задачу?

Обратившись для этого к определенным принципам геометрии, восстанавлив цепочку теорем. При этом мы пытаемся использовать все имеющиеся у нас данные. Заметим, что, раз проведенные диаметры взаимно перпендикулярны, треугольник ОАК является прямоугольным. Величина ОА = 2/3r. Постараемся теперь найти длину второго катета, чтобы затем применить теорему Пифагора и определить длину гипотенузы АК. Можно попробовать использовать и какие-то другие методы. Но вдруг, внимательно посмотрев на рисунок, мы обнаруживаем, что ОАВК — это прямоугольник, у которого, как известно, диагонали равны, т.е. АК = ОВ. ОВ же равно радиусу окружности, следовательно, без всяких вычислений ясно, что АК = г.

Вот оно — красивое и психологически интересное решение задачи.

В приведенном примере важно следующее.
— Во-первых, задачи подобного рода обычно относятся к четко определенной предметной области. Решая их, мы ясно представляем себе, где, собственно, надо искать решение. В данном случае мы не задумываемся над тем, правильны ли основания евклидовой геометрии, не нужно ли придумать какую-то другую геометрию, какие-то особые принципы, чтобы решить задачу. Мы сразу истолковываем ее как относящуюся к области евклидовой геометрии.

— Во-вторых, эти задачи — необязательно стандартные, алгоритмические. В принципе их решение требует глубокого понимания специфики рассматриваемых объектов, развитой профессиональной интуиции. Здесь, следовательно, нужна некоторая профессиональная тренированность. В процессе решения задач такого рода мы открываем новый путь. Мы замечаем «вдруг», что изучаемый объект можно рассматривать как прямоугольник и вовсе не нужно выделять в качестве элементарного объекта для формирования правильного пути решения задачи прямоугольный треугольник.
Конечно, приведенная выше задача очень проста. Она нужна лишь для того, чтобы в целом очерчить тип задач второго рода. Но среди таких задач существуют и неизмеримо более сложные, решение которых имеет большое значение для развития науки.

Рассмотрим, например, открытие новой планеты У. Леверье и Дж. Адамсом. Конечно, это открытие — большое событие в науке, тем более если учесть, как оно было сделано:
— сначала были обсчитаны траектории планет;
— потом было обнаружено, что они не совпадают с наблюдаемыми;
— затем было высказано предположение о существовании новой планеты;
— потом навели телескоп в соответствующую точку пространства и... обнаружили там планету.

Но почему это большое открытие можно отнести только к открытиям второго рода?
Все дело в том, что оно было совершено на четком фундаменте уже разработанной небесной механики.
Хотя задачи второго рода, конечно, можно подразделять на подклассы различной сложности, А. Эйнштейн был прав, отделяя их от фундаментальных проблем.
Ведь последние требуют открытия новых фундаментальных принципов, которые не могут быть получены какой-либо дедукцией из существующих принципов.
Конечно, между задачами первого и второго рода существуют промежуточные инстанции, но мы не будем их здесь рассматривать, а перейдем сразу к задачам первого рода.
Таких проблем возникало перед человечеством в общем-то не так уж много, но решения их всякий раз означали громадный прогресс в развитии науки и культуры в целом. Они связаны с созданием таких фундаментальных научных теорий и концепций, как геометрия Евклида,
гелиоцентрическая теория Коперника,
классическая механика Ньютона,
geometriya Lobachevskogo, генетика Менделя,
теория эволюции Дарвина,
теория относительности Эйнштейна,
квантовая механика,
структурная лингвистика.

Все они характеризуются тем, что интеллектуальная база, на которой они создавались, в отличие от области открытий второго рода, никогда не являлась строго ограниченной.

Если говорить о психологическом контексте открытий разных классов, то, вероятно, он одинаков.

— В самом поверхностном виде его можно охарактеризовать как непосредственное видение, открытие в полном смысле этого слова. Человек, как считал Р. Декарт, «вдруг» видит, что проблему нужно рассматривать именно так, а не иначе.

— Далее, следует заметить, что открытие никогда не бывает одноактным, а носит, так сказать, «челночный» характер. Сначала присутствует некое ощущение идеи; потом она проясняется путем выведения из нее определенных следствий, которые, как правило, уточняют идею; затем из новой модификации выводятся новые следствия и т.д.

Но в гносеологическом плане открытия первого и второго родов различаются радикальным образом.

2. ИСТОРИЧЕСКАЯ ОБУСЛОВЛЕННОСТЬ ФУНДАМЕНТАЛЬНЫХ ОТКРЫТИЙ

Попытаемся представить себе решение задач первого рода.

Выдвижение новых фундаментальных принципов всегда связывалось с деятельностью гениев, с озарением, с какими-то тайными характеристиками человеческой психики.

Великолепным подтверждением такого восприятия этого рода открытий является борьба ученых за приоритет. Сколько было в истории острых ситуаций во взаимоотношениях между учеными, связанных с их уверенностью в том, что никто другой не мог получить достигнутые ими результаты.

Например, известный социалист-утопист Ш.Фурье претендовал на то, что он раскрыл природу человека, открыл, как надо устроить общество, чтобы в нем не было никаких социальных конфликтов. Он был убежден,
что если бы родился раньше своего времени, то помог бы людям решить все их проблемы без войн и идеологических конфронтации. В этом смысле он связывал свое открытие со своими индивидуальными способностями.

Как же все-таки появляются фундаментальные открытия? В какой мере их осуществление связано с рождением гения, проявлением его уникального дарования?

Обращаясь к истории науки, мы видим, что такого рода открытия действительно осуществляются незаурядными людьми. Вместе с тем обращает на себя внимание тот факт, что многие из них делались независимо друг от друга несколькими учеными практически в одно время.

Н.И.Лобачевский, Ф.Гаусс, Я.Больянг, не говоря уже о математиках, которые развивали основы такой геометрии с меньшим успехом, т.е. целая группа ученых, практически одновременно пришли к одним и тем же фундаментальным результатам.

Две тысячи лет люди бились над этой проблемой пятого постулата геометрии Евклида, и «вдруг», в течение буквально 10 лет, ее разрешает сразу десяток людей.

— Ч. Дарвин впервые обнародовал свои идеи об эволюции видов в докладе, прочитанном в 1858 г. на заседании Линнеевского общества в Лондоне. На этом же заседании выступил и Уоллес с изложением результатов исследований, которые, по существу, совпадали с дарвиновскими.

— Специальная теория относительности носит, как известно, имя А.Эйнштейна, который изложил ее принципы в 1905 г. Но в том же 1905 г. подобные результаты были опубликованы А.Пуанкаре.

— Совершенно удивительно переоткрытие менделевской генетики в 1900 г. одновременно и независимо друг от друга Э. Чермаком, К. Корренсом и Х. де Фризом.

Подобных ситуаций можно найти в истории науки огромное количество.

И коль скоро дело обстоит так, что фундаментальные открытия делаются почти одновременно разными учеными, то, следовательно, имеется их историческая обусловленность.

В чем же она в таком случае заключается?

Пытаясь ответить на этот вопрос, сформулируем следующее общее положение.
Фундаментальные открытия всегда возникают в результате решения фундаментальных проблем.

Прежде всего обратим внимание на то, что когда мы говорим о фундаментальных проблемах, мы имеем в виду такие вопросы, которые касаются наших общих представлений о действительности, ее познании, о системе ценностей, руководящей нашим поведением.

Фундаментальные открытия часто трактуются как решения частных задач и не связываются с какими-либо фундаментальными проблемами.

— Скажем, на вопрос, как была создана теория Коперника, отвечают, что исследования показывали несоответствие наблюдений и тех предсказаний, которые делались на базе птолемеевской геоцентрической системы, и поэтому возник конфликт между новыми данными и старой теорией.

— На вопрос, как была создана неевклидова геометрия, дается такой ответ: в результате решения проблемы доказательства пятого постулата геометрии Евклида, который никак не могли доказать.

3. ГЕЛИОЦЕНТРИЧЕСКАЯ СИСТЕМА КОПЕРНИКА

Посмотрим с этих позиций на особенности процесса фундаментальных открыв, начав наш анализ с изучения истории создания гелиоцентрической системы мира.

Представление коперниковской системы мироздания как возникшей из-за несоответствия астрономических наблюдений геоцентрической модели мира Птолемея не соответствует историческим фактам.

— Во-первых, система Коперника вовсе не описывала наблюдаемые данные лучше, чем птолемеевская система. Кстати, именно поэтому ее отвергали философ Ф. Бэкон и астроном Т. Браге.

— Во-вторых, даже если допустить, что птолемеевская модель имела какие-то расхождения с наблюдениями, нельзя отвергнуть и ее возможности справиться с этими расхождениями.

Ведь поведение планет представлялось в этой модели с помощью тщательно разработанной системы эпициклов, которая могла описывать сколь угодно сложное механическое движение. Иными словами, никакой проблемы согласования движения планет по птолемеевской системе с эмпирическими данными просто не существовало.

Но как же тогда могла возникнуть и тем более утвердить себя система Коперника?
Чтобы понять ответ на этот вопрос, нужно осознать суть мировоззренческих новшеств, которые она несла с собой.

Во времена Н.Коперника господствовало теологизированное аристотелевское представление о мире. Суть его заключалась в следующем.

Мир создан Богом специально для человека. Для человека создана и Земля как место его обитания, помещенное в центр мироздания. Вокруг Земли движется небесный свод, на котором расположены все звезды, планеты, а также сферы, связанные с перемещением Солнца и Луны. Весь небесный мир предназначен для того, чтобы обслуживать земную жизнь людей.

В соответствии с этой установкой, весь мир делится на подлунный (земной) и надлунный (небесный)

— Подлунный мир — это бренный мир, в котором живет каждый отдельный смертный человек.

— Небесный мир — это мир для человечества вообще, вечный мир, в котором действуют свои законы, отличные от земных.

— В земном мире справедливы законы аристотелевской физики, согласно которой все движения осуществляются в результате непосредственного воздействия каких-то сил.

— В небесном мире все движения осуществляются по круговым орбитам (система эпициклов) без воздействия каких-либо сил.

Н. Коперник радикально изменил эту общепринятую картину мира.

Он не просто поменял местами Землю и Солнце в астрономической схеме, но изменил место человека в мире, поместив его на одну из планет, перепутав земной и небесный миры.

Разрушительный характер идей Н.Коперника был ясен всем. Протестантский лидер М.Лютер, который к астрономии не имел никакого отношения, высказывался в 1539 г. по поводу учения Коперника следующим образом: «Дурак хочет перевернуть вверх дном все искусство астрономии. Но, как указывает Священное писание, Иисус Навин велел остановиться Солнцу, а не Земле».

Могла ли какая-то незначительная причина вызвать столь новые радикальные идеи?

Что человек делает, когда ему в палец попадает заноза? Он, конечно, пытается вытащить занозу, подлечить палец. Вот если началась гангрена, тогда он не пожалеет и целой руки.
Проблемы точного описания наблюдаемых траекторий планет, как уже говорилось, не могли быть основанием для столь смелых и решительных действий.

С другой стороны, следует иметь в виду, что астрономия того времени содержала и немалые возможности для довольно существенных новаций. Так, Тихо Браге, решая астрономические проблемы, связанные с усовершенствованием расчетов траекторий планет, предложил в полном соответствии с традиционным мировоззрением новую систему, в которой вокруг

(258)

Земли вращалось Солнце, а вокруг Солнца — все остальные планеты. Зачем же Н. Копернику понадобилось выдвигать свои идеи? По-видимому, он решал какую-то свою, фундаментальную проблему. Что это была за проблема?

— И Птолемей, и Аристотель, и Коперник исходили из того, что в небесном мире все движения происходят по окружностям.

— Вместе с тем еще в античности была высказана глубокая мысль, что природа в принципе проста. Эта мысль стала со временем одним из фундаментальных принципов познания действительности.

Вместе с тем наблюдательная астрономия обнаружила к тому времени следующее. Хотя птолемеевская модель мира обладала возможностями сколько угодно точного описания любой траектории, для этого было необходимо постоянно изменять количество эпициклов (сегодня — одно количество, завтра — другое). Но в таком случае получалось, что планеты вовсе и не двигаются по эпициклам. Получается, что эпициклы не отражают реальных движений планет, а являются просто математическим приемом описания этого движения.

Кроме того, по системе же Птолемея получалось, что для описания траектории одной планеты надо вводить огромное число эпициклов. Усложненная астрономия плохо выполняла свои практические функции. В частности, было очень трудно вычислить даты религиозных праздников. Эта трудность настолько четко осознавалась в то время, что даже сам папа Римский счел необходимым произвести реформы в астрономии.

Н. Коперник увидел, что два фундаментальных мировоззренческих принципа его времени — принцип движения небесных тел по кругам и принцип простоты природы явно не реализуются в астрономии.
Решение этой фундаментальной проблемы и привело его к великому открытию.

4. ГЕОМЕТРИЯ ЛОБАЧЕВСКОГО

Перейдем к анализу другого открытия — открытия неевклидовой геометрии. Попытаемся показать, что и здесь речь шла о фундаментальной проблеме. Рассматривая этот пример, мы выясним ряд других важных моментов истолкования фундаментальных открытий.

Создание неевклидовой геометрии обычно представляется в виде решения известной проблемы пятого постулата геометрии Евклида.

Эта проблема заключалась в следующем.

Основу всей геометрии, как это следовало из системы Евклида, представляли пять следующих постулатов:

1) через две точки можно провести прямую, и притом только одну;
2) любой отрезок может быть продолжен в любые стороны до бесконечности;
3) из любой точки как из центра можно провести окружность любого радиуса;
4) все прямые углы равны;
5) две прямые, пересеченные третьей, пересекутся с той стороны, где сумма внутренних односторонних углов меньше 2d.

Уже во времена Евклида стало ясно, что пятый постулат слишком сложен по сравнению с другими исходными положениями его геометрии. Другие положения казались очевидными. Именно из-за их очевидности они рассматривались как постулаты, т.е. как то, что принимается без доказательств.

Вместе с тем еще Фалес доказал равенство углов при основании равнобедренного треугольника, т.е. положение, значительно более простое, чем пятый постулат. Отсюда ясно то, почему к этому постулату всегда относились с подозрением и пытались представить его теоремой. И у самого Евклида геометрия строилась так, что сначала доказывались те положения, которые не опираются на пятый постулат, а потом уже этот постулат использовался для развертывания содержания геометрии.

Интересно то, что пятый постулат геометрии Евклида стремились доказать как теорему, сохраняя при этом убежденность в
его истинности, буквально все крупные математики, вплоть до Н.И. Лобачевского, Ф. Гаусса и Я. Больяи, которые в конце концов и решили проблему. Их решение складывается из следующих моментов:

— пя́тый постулат геометрии Евклида действительно является по- стулатом, а не теоремой;

— можнó построить новую геометрию, принимая все евклидовы по- стулаты, кроме пятого, который заменяется его отрицанием, т.е. например, утверждением, что через точку, лежащую вне прямой, можно провести бесконечное число прямых, параллельных данной;

В результате такой замены и была построена неевклидова геометрия. Поставим теперь следующие вопросы.

— Можно ли считать, что только стремление доказать пя́тый посту- лат привело к созданию неевклидовых геометрий?

— Почему в течение двух тысячелетий ни у кого не возникало даже мысли о возможности построения неевклидовой геометрии?

Чтобы ответить на эти вопросы, обратимся к истории науки.

До Н. И. Лобачевского, Ф. Гаусса, Я. Больяи на евклидову геометрию смотрели как на идеал научного знания.

Этому идеалу поклонялись буквально все мыслители прошлого, счита́вшие, что геометрическое знание в изложении Евклида является совер- шенным. Оно представлялось образцом организации и доказательности знания.

У И.Канта, например, идея единственно́сти геометрии была органи- ческой частью его философской системы. Он считал, что евклидово вос- приятие действительности является априорным. Оно есть свойство нашего сознания, и потому мы не можем воспринимать действительность иначе.

Вопрос о единственно́сти геометрии был не просто математическим вопросом.

Он носил мировоззренческий характер, был включен в культуру.

Именно по геометрии судили о возможностях математики, об осо- бенностях ее объектов, о стилях мышления математиков и даже о возмож- ностях человека иметь точное, доказательное знание вообще.

Откуда же тогда возникла сама идея возможности различных геомет- рий?

Почему Н.И.Лобачевский и другие ученые смогли пройти к решению проблемы пя́того постулатов?
Обратим внимание на то обстоятельство, что время создания неевклидовых геометрий было кризисным с точки зрения решения проблемы пятого постулата Евклида. Хотя математики занимались этой проблемой в течение двух тысячелетий, у них при этом не возникало никаких стрессовых ситуаций по поводу того, что она так долго не решается. Они думали, видимо, так:

— геометрия Евклида — это великолепно построенное здание;
— правда, в ней имеется некоторая неясность, связанная с пятым постулатом, однако в конце концов, она будет устранена.

Проходили, однако, десятки, сотни, тысячи лет, а неясность не устранялась, но это никого особенно не волновало. По-видимому, логика здесь могла быть такая: в конце концов, истина одна, а ложных путей сколько угодно. Пока не удается найти правильное решение проблемы, но оно, несомненно, будет найдено. Утверждение, содержащееся в пятом постулате будет доказано и станет одной из теорем геометрии.

Но что же случилось в начале XIX в.?

Отношение к проблеме доказательства пятого постулата существенно меняется. Мы видим целый ряд прямых заявлений по поводу весьма неблагополучного положения в математике в связи с тем, что никак не удается доказать столь злополучный постулат.

Наиболее интересным и ярким свидетельством этого является письмо Ф. Больяи его сыну Я. Больяи, который стал одним из создателей неевклидовой геометрии.

«Молю тебя, — писал отец, — не делай только и ты попыток одолеть теорию параллельных линий; ты затратишь на это все время, а предложения этого вы не докажете все вместе. Не пытайся одолеть теорию параллельных линий ни тем способом, который ты сообщаешь мне, ни каким-либо другим. Я изучил все пути до конца; я не встретил ни одной идеи, которой бы я не разрабатывал. Я прошел весь беспростственный мрак этой ночи, и всякий светоч, всякую радость жизни я в ней похоронил. Ради бога, молю тебя, оставь эту материю, страшись ее не меньше, нежели чувственных увлечений, потому что и она может лишить тебя всего твоего времени, здоровья, покоя, всего счастья твоей жизни. Этот беспросветный мрак может потопить тысячи ньютоновских баши. Он никогда не прояснится на земле, и никогда несчастный род человеческий не будет владеть чем-либо совершенным даже в геометрии».

Почему такая реакция возникает только в начале XIX в.?
Прежде всего потому, что в это время проблема пятого постулата перестала быть частной, которую можно и не решать. В глазах Ф.Больяи она представляла как целый веер фундаментальных вопросов.
— Как вообще должна быть построена математика?
— Может ли она быть построена на действительно прочных основаниях?
— Является ли она достоверным знанием?
— Является ли она вообще логически прочным знанием?
Такая постановка вопроса была обусловлена не только историей развития исследований, связанных с доказательством пятого постулатата. Она определялась развитием математики в целом, в том числе ее использованием в самых различных сферах культуры.
Вплоть до XVII в. математика находилась в зачаточном состоянии. Наиболее разработанной была геометрия, были известны начала алгебры и тригонометрии. Но затем, начиная с XVII в., математика стала бурно развиваться и к началу XIX в. она представляла довольно сложную и развитую систему знаний.
— Прежде всего под влиянием потребностей механики были созданы дифференциальное и интегральное исчисления.
— Значительное развитие получила алгебра. В математику органично вошло понятие функции (активно использовалось большое количество различных функций во многих разделах физики).
— Сложилась в достаточно целостную систему теория вероятности.
— Сформировалась теория рядов.
Таким образом, математическое знание выросло не только количественно, но и качественно. Вместе с тем появилось большое число понятий, которые математики не умели истолковывать.
— Например, алгебра несла с собой определенное представление о числе. Положительные, отрицательные и мнимые величины были в равной мере ее объектами. Но что такое отрицательные или мнимые числа, этого никто не знал вплоть до начала XIX в.
— Не было ясного ответа и на более общий вопрос — что вообще есть число?
— А что такое бесконечно малые величины?
— Как можно обосновать операции дифференцирования, интегрирования, суммирования рядов?
— Что представляет собой вероятность?
В начале XIX в. никто не мог ответить на эти вопросы.
Короче говоря, в математике к началу XIX в. сложилась в целом сложная ситуация.
— С одной стороны, эта область науки интенсивно развивалась и находила ценные приложения,
— с другой — она покоилась на очень неясных основаниях.
В такой ситуации по-другому была воспринята и проблема пятого постулата геометрии Евклида.
Трудности истолкования новых понятий можно было понять так: то, что неясно сегодня, станет ясным завтра, когда соответствующая область исследований получит достаточное развитие, когда будет сосредоточено достаточно интеллектуальных усилий для решения проблемы.
Проблема пятого постулата существует, однако, уже два тысячелетия. И до сих пор у нее нет решения.
Может быть, эта проблема устанавливает некий эталон для истолкования современного состояния математики и уяснения того, что есть математика вообще?
Может быть, тогда математика — это вовсе и не точное знание?
В свете таких вопросов проблема пятого постулата перестала быть частной проблемой геометрии.
Она превратилась в фундаментальную проблему математики.
Этот анализ дает нам еще одно подтверждение той идеи, что фундаментальные открытия суть решения фундаментальных проблем.
Он показывает также, что фундаментальными проблемами становятся в рамках культуры, иначе говоря, фундаментальность исторически обусловлена.
Но в рамках культуры не только формируются фундаментальные проблемы, в них, как правило, подготавливаются и многие компоненты их решения. Отсюда становится ясным, почему такие проблемы решаются именно в данный момент, а не в какое-либо иное время.
Рассмотрим опять же в этой связи процесс создания неевклидовой геометрии. Обратим внимание на следующие интересные фрагменты истории исследований в этой области.

Доказательства пятого постулата Евклида проводились на протяжении двух тысячелетий, но при этом они считались задачей второго рода, т.е. постulant представлялся теоремой евклидовой геометрии. Это была задача с четко фиксируемым фундаментом для ее разрешения.

Однако во второй половине XVIII в. появляются исследования, в которых высказывается мысль о неразрешимости данной проблемы. В 1762 г. Клюгель, публикуя обзор исследований этой проблемы, приходит к выводу, что Евклид был, по-видимому, прав, считая пятый постулат именно постулатом.

Независимо от того, как относился к своему выводу Клюгель, его вывод был очень серьезным, так как провоцировал следующий вопрос: если пятый постулат геометрии Евклида действительно является постулатом, а не теоремой, то что же такое постулат? Ведь постулат считалось положение очевидное, а потому не требующее доказательства.

Но подобный вопрос уже не являлся вопросом второго рода.

Он представлял уже метавопрос, т.е. выводил мысль на философско-методологический уровень.

Итак, проблема пятого постулата геометрии Евклида начинала по-рождать совсем особый род размышлений.

Перевод этой проблемы на метауровень придал ей мировоззренческое звучание.

Она перестала быть проблемой второго рода.

Другой исторический момент. Весьма любопытными представляются исследования, проводившиеся во второй половине XVIII в. И.Ламбертом и Дж.Саккери. Об этих исследованиях знал И.Кант, который не случайно говорил о гипотетическом статусе геометрических положений. Если вещи-в-себе характеризуются геометрически, то почему бы им, ставил вопрос И.Кант, не подчиняться какой-либо иной геометрии, отличной от евклидовой?

Ход рассуждений И.Канта был навеян идеями абстрактной возможности неевклидовых геометрий, которые высказывались И.Ламбертом и Дж.Саккери.
Дж. Саккери, пытаясь доказать пятый постулат геометрии Евклида в качестве теоремы, т.е. смотря на него как на проблему ординарную, использовал способ доказательства, называемый «доказательством от противного».

Ход рассуждений Дж. Саккери был, вероятно, следующим. Если мы примем вместо пятого постулата утверждение ему противоположное, соединим его со всеми другими утверждениями евклидовой геометрии и, выводя следствия из такой системы исходных положений, придут к противоречию, то тем самым мы докажем истинность именно пятого постулата.

Схема этого рассуждения очень проста. Может быть либо А, либо не-А, и, если все остальные постулаты истинны и мы допускаем не-А, а получаем ложь, значит, истинно именно А.

Используя этот стандартный прием доказательства, Дж. Саккери стал развертывать систему следствий из своих предположений, стремясь обнаружить их противоречивость. Таким образом он вывел около 40 теорем неве- евклидовой геометрии, но противоречий не обнаружил.

Как же он оценил складывающуюся ситуацию? Считая пятый постулат геометрии Евклида теоремой (т.е. задачей второго рода), он просто заключил, что в его случае метод «доказательства от противного» не работает. Итак, смотря на эту проблему как на проблему второго рода, он, имея в руках новую геометрию, не смог правильно истолковать ситуацию.

Отсюда следуют два вывода.
— Во-первых, в определенном смысле новая геометрия появилась в культуре уже до того, как была открыта неевклидова геометрия.
— Во-вторых, именно верная оценка проблемы пятого постулата, т.е. трактовка ее как проблемы первого, а не второго рода, позволила Н. И. Лобачевскому, Ф. Гауссу и Я. Больян прийти к решению проблемы и создать неевклидову геометрию. Надо было понять саму возможность создания таких геометрий.

Дж. Саккери допускал такую возможность лишь как логическую, сделав конструктивный шаг в решении проблемы евклидового постулата в традиционном стиле. Но он вовсе не рассматривал ее всерьез считая, что неевклидовы геометрии невозможны, хотя и логически допустимы.

Таким образом, история не только подготавливает проблему, но и во многом определяет направление и возможность ее решения.

Рассмотрим в таком ракурсе коперниканскую революцию.
Как хорошо известно, вовсе не Н.Коперник открыл гелиоцентрическую систему. Ее создал Аристарх еще в античности. Может быть, Н.Коперник не знал об этом? Да ничего подобного! Он знал и ссылался на Аристарха.

Но тогда почему же говорят о коперниканской?

Дело в том, что Н.Коперник перенес уже известную модель в совершенно новую культурную среду, поняв, что с ее помощью можно решить целый ряд проблем. В этом как раз и заключалась суть его революции, а вовсе не в создании гелиоцентрической системы.

5. ОТКРЫТИЕ Г. МЕНДЕЛЯ

Рассмотрим теперь вопрос о культурной подготовке открытий на примере открытия Г. Менделя.

— В этом открытии присутствуют не только так называемые законы Менделя, представляющие эмпирические закономерности, о которых обычно говорят, но и система очень важных теоретических положений, которая, по сути дела, и определяет значимость открытия Г.Менделя.

— Более того, эмпирические закономерности, установление которых приписывается Г.Менделю, вовсе и не были им установлены. Они были известны еще до него и изучались О.Сажрэ, Т.Найтом, Ш.Ноденом. Г.Мендель, собственно, только уточнил их.

— Существенно и то, что его открытие имело методологическое значение. Для биологии оно давало не только новую теоретическую модель, но и систему новых методологических принципов, с помощью которых можно было изучать очень сложные явления жизни.

Г. Мендель предположил наличие некоторых элементарных носителей наследственности, которые могут свободно комбинироваться при слиянии клеток в процессе оплодотворения. Именно это комбинирование зачатков наследственности, которое осуществляется на клеточном уровне, дает различные типы наследственных структур.

Такая теоретическая модель включает в себя ряд очень важных идей.

— Во-первых — это выделение элементарных носителей на уровне клетки.

Обосновывая такое выделение, Г.Мендель опирался, очевидно, на теорию клеточного строения живого вещества. Она была очень важной для него. Г.Мендель познакомился с основными ее положениями в курсе лек-
ций Ф.Унгера в Венском университете. Унгер был одним из новаторов использования физико-химических методов в исследовании живого. При этом он считал, что эти исследования должны доходить до уровня клетки. — Во-вторых, Г.Мендель считал, что законы, управляющие носителями наследственности, столь же определены, как и законы, которым подчиняются физические явления.

Очевидно, здесь Г.Мендель исходил из общей мировоззренческой установки, которая глубоко укоренилась в культуре того времени, т.е. установки о закономерности природы, которая распространялась и на явления наследственности.

— В-третьих, Г.Мендель реализовывал в своих исследованиях общий идеал физического познания мира, согласно которому следует выявить элементарный объект, найти законы управляющие его поведением и потом, опираясь на эти знания конструировать более сложные процессы, описывая и объясняя их особенности.

— В-четвертых, Г.Мендель предположил, что законы, управляющие его элементарными носителями, суть вероятностные законы. Для 1865 г., в котором он опубликовал свое открытие, это была очень новая идея. Ведь именно в то время вероятностные представления начали вводиться в физику. Чуть раньше — в 30-х годах — вероятностное описание явлений действительности вошло в культуру, благодаря работам Г.Кетле по социальной статистике. Г.Мендель заимствовал идеи вероятностного описания именно из социальной статистики.

Кроме того, Г.Мендель предполагал, что его теория позволит объяснить наследственность лишь в том случае, если она будет подтверждена опытом. Это было очень важно, тем более что в науке того времени явления жизни, как и многие другие явления, объяснялись спекулятивным образом.

Но как могло быть произведено сопоставление этой теории с опытом в биологии?

Для Г. Менделя здесь возникла новая проблема. Оно должно было осуществляться на базе статистической обработки элементарных данных. Именно неумение обрабатывать статистический материал, по мнению Г.Менделя, не позволило, например, Ш.Нодену установить правильные количественные соотношения в расщеплении признаков.

Наконец, надо отметить, что менделевский экспериментальный подход в биологии был спланирован на очень длинное время. Сам Г.Мендель
проводил эксперименты около десяти лет, реализуя заранее намеченню
программу исследований.

Успех его экспериментов был связан прежде всего с выбором мате-
риала. Менделевские законы наследственности очень прости, но проявля-
ются фактически на небольшом количестве биологических объектов. Од-
ним из таких объектов является горох, для которого к тому же надо было
выбрать чистые линии. Этим отбором Г.Мендель занимался два года. Он
четко представлял себе, следуя физическому идеалу, что объект, который
он выбирает, должен быть простым, полностью контролируемым во всех
своих изменениях. Только тогда и можно установить точные законы. Ко-
нечно, Г.Мендель не представлял наверняка всех деталей, которые он по-
лучит в будущем.

Но несомненно то, что все его исследования были четко спланирова-
ны и опирались на систему теоретических взглядов о закономерностях
наследования.

Он принципиально не мог сделать и одного шага по этому пути, если
бы у него не было заранее достаточно разработанных теоретических идей.

Таким образом, открытие Г.Менделе включает в себя не просто об-
наружение совокупности эмпирических закономерностей, которые были
им не столько открыты, сколько уточнены.

Главное в том, что Г.Мендел впервые построил теоретическую мо-
дель явлений наследственности, которая опиралась на выделение ее эле-
ментарных носителей, подчиняющихся вероятностным законам.

Особого внимания заслуживает сама система идей методологическо-
го характера, связанных с оценкой роли в науке статистики, вероятности и
планирования эмпирических исследований.

Открытие Г.Менделе не было случайным.

Оно, как и другие фундаментальные открытия, обусловлено особен-
ностями культуры его времени, как европейской, так и национальной.

Но почему это выдающееся открытие было сделано именно Г.Менделе —
монахом и почему именно в Моравии, по существу периферии Австрийской империи?

Попробуем ответить на эти вопросы.

Г. Менделе был монахом августинского монастыря в Броно, который
сосредоточил в своих стенах множество мыслящих и образованных людей.
Так, настоятель монастыря Ф.Ц.Напп счи-
тается выдающимся деятелем моравской культуры. Он активно содействовал развитию образования в своем крае, интересовался естествознанием и занимался, в частности, проблемами селекции.

Среди монахов этого монастыря был Т.Братранек, ставший впоследствии ректором Краковского университета. Т.Братранека привлекали натурфилософские представления Ф.Гете, и он писал работы, в которых сопоставлял эволюционные идеи Ч.Дарвина и великого немецкого поэта.

Еще один монах этого монастыря — М.Клацель — страстно увлекался учением Г. Гегеля о развитии. Он интересовался закономерностями образования растительных гибридов, проводил опыты с горохом. Именно от него Г.Мендель унаследовал участок для своих опытов. За свои либеральные взгляды М.Клацель был изгнан из монастыря и уехал в Америку.

В монастыре проживал и П.Кржижковский, реформатор церковной музыки, впоследствии ставший учителем известного чешского композитора Л.Яначека.

Г. Мендель с детства проявлял большие способности в изучении наук. Стремление получить хорошее образование и избавиться от тяжелых материальных забот привело его в 1843 г. в монастырь. Здесь, изучая богословие, он вместе с тем проявил интерес к земледелию, садоводству, виноградарству. Стремясь получить систематические знания в этой области, он слушал лекции по этим предметам в философском училище в городе Брно. Еще совсем молодым человеком Г. Мендель преподавал латинский, греческий и немецкий языки, а также курс математики и геометрии в гимназии города Зноймо. С 1851 по 1853 г. Г.Мендель изучал естественные науки в Венском университете, а с 1854 г., в течение 14 лет, преподавал в училище физику и природоведение.

В своих письмах он часто называл себя физиком, проявляя большую привязанность к этой науке. До конца своей жизни он сохранял интерес к различным физическим явлениям. Но в особенности его занимали проблемы метеорологии. Когда его избрали аббатом монастыря, у него уже не было времени проводить свои биологические опыты, к тому же у него ухудшилось зрение. Но он до самой смерти занимался метеорологическими исследованиями и при этом особенно увлекался их статистической обработкой.

Уже эти факты из жизни Г.Менделя дают нам представление о том, почему Г.Мендель — монах смог сделать научное от-
крытие. Но почему это открытие произошло именно в Моравии, а не, скажем, в Англии или Франции, которые являлись в то время несомненными лидерами в развитии науки?

Во время жизни Г. Менделя Моравия была частью Австрийской империи. Ее коренное население подвергалось сильным притеснениям, а габсбургские монархи не были заинтересованы в развитии моравской культуры. Но Моравия была чрезвычайно благоприятной страной для развития сельского хозяйства. Поэтому в 70-е годы XVIII в. габсбургская правительница Мария Терезия, проводя экономические реформы, повелела организовать в Моравии сельскохозяйственные общества. Чтобы больше собирать продукции с земли, всем, кто ведет хозяйство, предписывалось даже сдавать экзамены по основам сельскохозяйственных наук.

В результате в Моравии стали создаваться сельскохозяйственные школы, началось развитие сельскохозяйственных наук. В Моравии сложилась весьма значительная концентрация обществ сельскохозяйственного профиля. Их было, пожалуй, больше, чем в Англии. Именно в Моравии впервые заговорили о селекционной науке, которая внедрялась и в практику. Уже в 20-е годы XIX в. в Моравии местные селекционеры активно используют метод гибридизации для выведения новых пород животных и особенно новых сортов растений. Проблемы селекционной науки колоссально обострились как раз на рубеже XVIII и XIX вв., поскольку бурный рост промышленности и городского населения требовал интенсификации сельскохозяйственного производства.

В этой обстановке раскрытие законов наследственности имело большое практическое значение. Проблема эта остро стояла и в теоретической биологии. Ученые XIX в. довольно много знали и о морфологии, и о физиологии живого. Благодаря теории естественного отбора Ч. Дарвина удалось понять сущность процесса эволюции жизни на Земле. Однако законы наследственности оставались непознанными.

Иными словами, создалась явно выраженная проблемная ситуация, фундаментального характера.

Замечательные и даже во многом удивительные результаты, полученные Г. Менделем также коренились в культуре того времени.

В этом смысле особенно показательна идея вероятностного характера законов наследственности. Она была заимствована Г. Менделем из социальной статистики, которая, благодаря прежде
всего работам А.Кетле, привлекала в то время к себе всеобщее внимание. Расширяющаяся в то время практика статистической обработки эмпирического материала как в социальной статистике, так и в физике, несомненно, способствовала ее распространению на область явлений жизни.

Вместе с тем стремление выделить элементарные единицы наследования и на основании их взаимодействия объяснить особенности процесса наследования в целом представляло явное следование физической методологии познания.

Этот идеал был четко сформулирован уже в начале XIX в. И он активно проникал во все науки. Кстати говоря, именно следуя ему, в биологии стали все шире применять физико-химические методы. В психологии И.Гербарт проводил исследования, прямо руководствуясь этим идеалом. На него ориентировался О.Конт обосновывая необходимость создания социологии. По этому же пути следовал Г.Мендель в изучении явлений наследственности.

Идея построить научную теорию наследования на уровне клетки могла возникнуть только в середине XIX в.

Наконец, если говорить о таких деталях, как выбор самого объекта исследования — гороха — то свойства расщепления, доминантности этого объекта обнаружили в конце XVIII — начале XIX вв. Имеется целый ряд работ, в которых описывались эти свойства, которые и привлекли внимание Менделя.

Одним словом, здесь, как и в других примерах, мы видим, что фундаментальные открытия являются решением фундаментальной проблемы.

Они всегда исторически подготовлены.

Подготовленной оказывается не только сама проблема, но и компоненты ее решения.

Но это не должно создавать иллюзию, что для такого рода открытий вовсе и не нужны гении. Осознание фундаментальной проблемы, нахождение реальных путей ее решения требует огромного интеллекта, широкой образованности, целеустремленности, которые и позволяют ученому лучше других чувствовать дыхание времени.

(273)
Глава III. РЕДУКЦИОНИЗМ: ЕГО ВОЗМОЖНОСТИ И ГРАНИЦЫ

1. СТРЕМЛЕНИЕ К СИНТЕЗУ

С самого зарождения науки ученые постоянно стремились свести более сложные явления к более простым и построить общую картину мира, основанную на небольшом количестве простых исходных принципов.

Эта тенденция реализовывалась буквально во всех отдельных областях науки и в научном познании в целом.

Еще в античности, как известно,
— Пифагор полагал, что мир представляет собой гармонию чисел;
— Демокрит видел мироздание как движение атомов в пустоте;
— Аристотель видел мир как подобный организации.

Попытки построения целостных картин мира, основанных на небольшом количестве исходных принципов, энергично осуществлялись в науке всегда.

С XVII по XIX вв. огромное большинство ученых вдохновлялось идеалом механической картины мира, согласно которой все явления нежизненной природы происходят в ньютоновских пространстве и времени и представляют собой результат действующих с необходимостью сил, приложенных к некоторым элементарным объектам.

Трудности построения такой картины мира, с которыми столкнулась физика в начале XX в., привели, как известно, к попыткам:
— с одной стороны, построения единой физической картины мира на базе электродинамики;

(274)
— с другой стороны, построения универсальной вероятностной физической картины мира.

Сегодня ученые стремятся построить единую физическую картину мира, в фундаменте которой лежат:
— синтез релятивистских и квантовых идей;
— идеи возможности построения единой теории всех фундаментальных взаимодействий.

Аналогичные построения осуществлялись и в других науках на всем протяжении их развития вплоть до нашего времени.

В XX в. мы видим, что:
— математики стремятся построить все их колоссально разросшееся здание на единой основе теории множеств;

— биологи огромные усилия тратят на то, чтобы построить целостную теоретическую биологию, основные принципы которой предполагают выявить в исследованиях современной молекулярной биологии, генетике, синтетической теории эволюции.

2. УСПЕХИ РЕДУКЦИОНИЗМА

Следует обратить внимание на то, что на этом пути были достигнуты выдающиеся успехи в науке и, следовательно, редукционистская программа, безусловно, была чрезвычайно эффективной как методологическая установка.

На базе механистической картины мира удалось с единой точки зрения описать процессы, происходящие как на Земле, так и на небе, поведение как твердых тел, так и жидк, и газообразных.

Электромагнитная картина мира позволила установить единую природу электрических и магнитных процессов, описать многие важные аспекты поведения не только макроскопических, но и микроскопических объектов.

В рамках статистической картины мира были разработаны универсальные схемы описания поведения сложных макроскопических систем самой различной природы, а с другой стороны, она позволила установить определенные черты единства между поведением макроскопических объектов и микрообъектов.

Несомненно, огромные успехи были достигнуты на этом пути в физике элементарных частиц. Здесь удалось существенно продвинуться в выявлении единства фундаментальных физических взаимодействий, что сопровождалось грандиозным синтезом физики элементарных частиц и космологии.

Значительные достижения редукционизма можно отметить в любой области науки, любой научной дисциплине.

Вместе с тем, нельзя не обратить внимание и на то, что все имевшие место в прошлом конкретные редукционистские программы встречались с препятствиями, непреодолимыми трудностями, которые влекли за собой радикальные их преобразования.

(275)
С позиций глобального редукционизма эту ситуацию можно было бы описать как замену плохой, неполноценной программы лучшей, более совершенной. С этой точки зрения развитие науки, вообще говоря, можно было бы представить как осуществляющееся на пути от относительной к абсолютной истине в форме постоянных смен менее совершенных все более и более совершенными редукционистскими программами.

В рамках этой позиции антиредукционистские научные построения, как правило, феноменологического характера, рассматриваются как временные явления, которые, несомненно, будут ассимилированы той или иной редукционистской программой, если не сегодня, то завтра, и если не настоящей, то какой-либо иной, более общей и фундаментальной, чем применяемые ныне.

Прежде чем оценивать статус этой чрезвычайно важной и плодотворной научной и методологической установки, ее возможности и границы, хотелось бы обратить внимание еще на один, очень существенный аспект редукционизма в науке, который часто остается в тени.

Обычно редукционизм обосновывается устройством самой действительности, но он связан не только с тем, что наука отображает, но и с тем, как она это делает.

Специфика научного познания заключается, в частности, в том, что оно в конечном итоге представляет собой совокупность различных познавательных процедур и способов организации полученного знания, которые, несомненно, носят интегрирующий характер.

Эта интеграция, реализуемая в науке, проявляется в общем в том, что бесконечное многообразие реальных явлений, существующих в их индивидуальности, неповторимости, вполне успешно описывается довольно жестким и конечным языком науки.

Поэтому, если понимать под редукционизмом сведение сложного к более простому, то процедуры редукционизма, несомненно, соответствуют самой сущности научного познания.

— Так, даже самое простейшее элементарное образование науки — научный факт — представляет собой отнюдь не отображение индивидуального, неповторимого, во всех деталях реализующегося реального события, а оказывается представлением целого класса явлений, объединенных на основе некоторого уровня абстракции.
— В эмпирической закономерности мы видим еще большее обобщение действительности. В ней в единое целое увязываются различные группы фактов.

— И, наконец, в теориях мы видим систематизацию огромного многообразия закономерностей. Здесь они получают единое истолкование на основе небольшого числа исходных принципов.

Таким образом, во всех формах организации научного знания осуществляется обобщенное описание действительности, на основе которого раскрывается все более глубоко сущность явлений и тем самым реализуется поэтапная редукция в направлении от малообобщенных ко все более обобщенным формам организации научного знания.

Если говорить о редукционизме в этом смысле, то и здесь приходит-ся считаться как с фактом с тем обстоятельством, что, хотя в научном познании и происходит постоянное движение ко все большей обобщенности знания, вместе с тем, мы сейчас имеем огромное многообразие различных областей науки и ни в одной области науки это не привело к устранению многообразия научных теорий и их редукции к одной теоретической схеме.

Рассматривая особенности научного познания с точки зрения реализации в нем программы редукционизма, мы не можем также не учитывать и того очевидного факта, что сегодня наука представляет собой колоссальное многообразие различных методов познания и значительного количества методологических исследовательских программ.

Если говорить о последних, то даже в пределах физики мы видим, что, с одной стороны, в ней применяются детерминистские описания, с другой — вероятностные. В одних случаях дается траекторное описание поведения объекта, в других же случаях описывается лишь связь начальных и конечных состояний системы, разделенных определенным промежутком времени.

В ней дается феноменологическое описание поведения системы в целом и осуществляется стремление понять свойства сложной системы как результат поведения составляющих ее элементов.

И, конечно, такого рода методологическими программами не исчерпывается научное познание в физике, а тем более, реализуемое в других областях науки, в которых изучаются многообразные проявления жизни, деятельности человека, развития общества, его материальной и духовной культуры.
3. КАК ОБОСНОВЫВАЕТСЯ РЕДУКЦИОНИЗМ?

При онтологическом обосновании редукционизма можно выделить, в сущности, две его важные предпосылки, которые отражают реальные свойства действительности:

— первая заключается в том, что свойства любого сложного образования, закономерности его функционирования полностью определяются закономерностями составляющих его частей;

— вторая предпосылка является результатом обобщения того, сейчас очевидного, факта, что все существующее в мире является результатом эволюции от простого к сложному. И это касается не только социальных процессов и различных проявлений жизни, но, в свете данных совре-
менной космологии, имеет отношение к любым объектам и процессам не-
живой природы.

Если рассматривать основания редукционизма, заключенные в самом процессе научного познания, то и здесь мы видим аналогичного рода предпосылки.

— Научное знание на любом этапе своего развития характеризуется определенной структурой. Оно организовано таким образом, что в основе его лежат некоторые фундаментальные теории.

— В то же время в процессе развития науки (хотя научное знание по-
стоянно перестраивается) степень его единства увеличивается, усиливают-
ся взаимосвязи между различными областями науки, и на основе развития фундаментального знания появляются все большие возможности синтеза знаний, получаемых как в пределах отдельных наук, так и в науке в целом, которая все в большей степени проявляет свое единство.

Эти обоснования редукционизма кажутся очень убедительными и незыблемыми. Такое ощущение получает чрезвычайно мощное подкреп-
ление в реальной эффективности методологии редукционизма.

4. АРГУМЕНТЫ ПРОТИВ РЕДУКЦИОНИЗМА

И вместе с тем, как представляется, редукционизм как глобальная, универсальная методологическая установка научного познания не является обоснованным:

— он не учитывает некоторые существенно важные характеристики действительности, на его основе нельзя построить адекватную картину мира;
— редукционистское видение развития науки не позволяет также раскрыть в полной мере особенности познавательного процесса.

Какие же черты объективной действительности не учитывает редукционистское видение мира?
— Оно, прежде всего, неточно решает вопрос о соотношении части и целого.

(279)

Конечно, целое в своем поведении существенно зависит от свойств и характера поведения его элементов. Однако редукция свойств целого к свойствам его частей возможна лишь в простейших ситуациях (в случае так называемых суммативных систем), которые представляют собой лишь незначительную часть из всего многообразия реально существующих объектов. Как правило, целое характеризуется специфическими параметрами и законами, которые не присущи отдельным его элементам.

Так, если мы рассмотрим одну грамм-молекулу, заключенную в со- суде и находящуюся в нормальных условиях, то она будет представлять собой совокупность примерно 1023 движущихся молекул. Каждая молекула в таком сосуде характеризуется механическими параметрами и подчиняется в своем движении законам механики. Вместе с тем, поведение газа в целом характеризуется термодинамическими параметрами: температурой, энтропией и др., которые не присущи отдельным молекулам.

Более того, эти характеристики не могут быть получены на основе детального механического описания движения всех молекул. Это связано с тем обстоятельством, что данная система за термодинамически значимые времена, т.е. макроскопически значимые времена, не является устойчивой в механическом отношении. Ее механическое описание возможно лишь в пределах времени, порядка времени свободного пробега молекулы. За этими же пределами она проявляет устойчивость лишь по отношению к термодинамическим параметрам, которые связаны с появлением в данной системе нового типа статистических законов. Важно обратить внимание на то, что невозможность сведения статистического описания к детальному описанию движения молекул, основанному на законах механики, связано с тем, что мы не можем разрешить огромную систему 6·10^{23} уравнений и не можем поставить в эти решения соответствующие каждой молекуле начальные условия.

Главное здесь заключается в том,
— что за пределами некоторого критического времени система становиться неустойчивой, и, следовательно, она вообще не описывается никакими динамическими законами;

— в этих условиях она приобретает новый тип устойчивости,

которая выражается в наличии статистических законов и которые описываются в статистической термодинамике;

— у этой системы складываются особые отношения с окружающей средой, которые выявляют ее целостность и устойчивость, выражающую термодинамическими параметрами.

При этом очень важно,

что взаимоотношения с другими объектами этой системы не зависят от деталей движения отдельных молекул и определяются поведением системы в целом.

Эта ситуация является чрезвычайно типичной для всех уровней организации материи, и она особенно четко проявляется для сложноорганизованных систем.

Так, любой организм представляет собой сложную систему, состоящую из большого многообразия частей, которые сами по себе тоже являются сложными системами. При этом каждая часть организма очень сложно и многообразно функционирует.

Однако для организма в целом существенным оказывается лишь целостное функционирование каждого его органа. Именно это обстоятельство влечет за собой большую устойчивость живых систем по отношению к изменяющимся внешним условиям и резко повышает адаптивные возможности организма.

Вообще следует сказать, что целое нельзя понять как функционирующее только на основе законов составляющих его элементов.

Дом, построенный из кирпичей, конечно, реализует те возможности, которые заложены в свойствах самого кирпича и связующего кирпичи раствор. Однако для того, чтобы дом был построен, мало знать свойства исходного строительного материала. Необходимо еще иметь план дома, который обусловливается способом его функционирования как целого и, тем самым, определяется его будущими функциями. Конечно, этот план соображается с возможностями строительного материала, но его создание обусловлено законами совсем иного уровня реальности.
Аналогичным образом поведение человека, конечно, связано с его природными и социальными качествами как индивидуума, однако сущность человека, как отмечал К.Маркс, выражается той системой общественных отношений, в которую он вовлечен. И любой живой организм определяется не только своей внутренней организацией, но и своим отношением к соответствующей популяции и даже ко всему живому миру.

Следует заметить, что вообще отношения между частью и целым оказываются чрезвычайно сложными и многообразными.

Приведенные выше примеры свидетельствуют не только о том, что целое несводимо к частям, но и о том, что часть может быть понята в полной мере лишь в ее соотнесении с целым.

Это обстоятельство совершенно очевидно в гуманитарном знании, где смысл любого понятия и даже высказывания определяется его контекстом. Знаменательный пример тому приводит В.Гейзенберг в своей книге «Часть и целое». Он вспоминает, как однажды они гуляли с Н.Бором и тот обратил его внимание на замок Эльсинор. В.Гейзенберг не проявил к нему никакого интереса. Однако, когда Н.Бор сказал, что именно этот замок был описан У.Шекспиром в «Гамлете», отношение В.Гейзенберга к этому замку резко изменилось.

Совершенно удивительное свидетельство этого единства части и целого дает современная физика.

Фундаментальное единство основных типов взаимодействий, описывающих поведение элементарных частиц, проявляет себя лишь в описании ранней стадии эволюции космоса.

Так, оказывается, что реальное единство слабого и сильного взаимодействий может проявляться лишь при таких энергиях, которые не существуют в современном мире и могли реализовываться только в первые секунды эволюции Метagalактики после Большого взрыва.

С другой стороны, мы удивительным образом обнаруживаем, что макроскопические свойства наблюдаемого нами мира, наличие галактик, звезд, планетных систем, жизни на Земле обусловлены небольшим количеством констант, характеризующих различные свойства элементарных частиц и основные типы фундаментальных взаимодействий. Так, например, если бы масса электрона была бы в 3—4 раза больше ее значения, то время существования нейтрального атома водорода исчислялось бы несколькими днями. А это привело бы к тому, что галактики и звезды состояли бы преимущественно из нейтронов,
многообразия атомов, и молекул в их современном виде просто бы не существовало.

Современная структура Вселенной обусловлена очень жестко так же величиной $\Delta m_N = m_N - m_P$, т. е. разницей в массах нейтрона и протона. Разность очень мала и составляет всего около 10^{-3} от массы протона. Однако, если бы она была в 3 раза больше, то во Вселенной не мог бы произойти нуклеосинтез, и в ней не было бы сложных элементов.

Увеличение константы сильного взаимодействия всего на несколько процентов привело бы к тому, что уже в первые минуты расширения Вселенной водород полностью бы выгорел и основным элементом в ней стал бы гелий.

Константа электромагнитного взаимодействия тоже не может существенно отклоняться от своего значения — $1/137$. Если бы, например, она была бы больше 1/80, то все частицы, обладающие массой покоя, аннигилировали бы. Вселенная состояла бы только из безмассовых частиц.

Вообще говоря, в некотором и очень важном отношении весь мир может быть представлен как совокупность взаимодействующих между собой различных дискретных образований.

Различного рода дискретности мы можем выявить на уровне элементарных частиц, в атомном мире, на уровне молекулярном. Большое многообразие дискретных систем представляют собой макроскопические объекты. Основными дискретностями в космосе являются звезды, звездные образования, галактики, скопления галактик. Дискретные образования можно выделить всюду. Они характерны и для горных пород. Они проявляют себя в явлениях жизни, в развитии человеческой культуры.

Все эти виды дискретных образований существуют как определенного рода целостности за счет внутренней энергии, присущей взаимодействию их частей,

а также благодаря их взаимодействию с другими целостными образованиями.

Различные виды целого находятся в квазистационарном состоянии и постоянно обмениваются энергией, в результате чего осуществляется их переход из одного квазиустойчивого состояния в другое.

По-видимому, как показывают исследования, проведенные в последнее время учеными самых разных специальностей, пространственные размеры, а также характерные для всех этих систем времена жизни не являются совершенно произвольными. Они обусловлены, вероятно, специфи-
ческими особенностями организации этих систем и характером их взаимодействия с другими системами.

Очень важно обратить внимание на то, что энергетические отношения, присущие любой системе, существенным образом зависят от ее организации.

Так, поступление энергии в живые системы, конечно, радикальным образом отличается от энергетического обмена, происходящего в физических системах. Оно, конечно, определяется их устройством, существенно зависит от возможности живых организмов активно относиться к окружающей среде.

Животные, благодаря их специфической внутренней организации и их способности перемещаться в пространстве, которые выработались в процессе эволюции, имеют возможность активно пополнять необходимую им энергию в ее концентрированных формах. Энергетические процессы, происходящие с живыми организмами, осуществляются, конечно, на основе физических взаимодействий. Однако сам процесс потребления энергии живым организмом извне и ее усвоение во многом определяются специфически биологическими закономерностями, которые связаны с формированием у животного условных и безусловных рефлексов, а также выработкой определенных форм поведения. Они, в свою очередь, могут быть поняты только на основе эволюции данного вида и даже биосферы в целом.

Для человека получение энергии связано существенным образом с характером культуры (как материальной, так и духовной), в которой он живет.

Обеспечение продуктами питания человека обусловлено технологией сельскохозяйственного производства, уровнем развития транспортных средств, формами обмена продуктами сельского хозяйства. Очевидно, что сегодня решение продовольственной проблемы существенным образом зависит от использования в этой сфере достижений науки и, конечно, оно во многом обусловлено характером социальных отношений.

Даже собственно физические взаимодействия человека опосредуются социально-культурными факторами. Так, непосредственное физическое воздействие солнечной энергии на человеческое тело подчиняется не только физическим законам, но и закономерностям, обусловливающим поведение человека и способы его жизнедеятельности.
Различные виды систем обладают своими специфическими пространственными формами, временными ритмами, своей внутренней организацией.

Они находятся в состоянии динамического равновесия, характеризуются собственными законами, которые определяют их поведение как целого.

Новое качество целого возникает, конечно, на основе свойств его частей за счет их особой организации в пределах целого.

Следует отметить, что новые законы, характеризующие особый тип устойчивости системы, не могут быть сведены к более простым закономерностям элементов уже хотя бы потому, что они представляют собой не только результат действия отдельных законов, но и следствие их организации.

Конечно, существуют целый классы систем, которые могут быть поняты на основе одного типа законов с непременным учетом специфических форм организации этих систем. Но надо иметь в виду, что уже сейчас мы можем выделить довольно много различных типов таких законов весьма разной степени обобщенности.

Так, скажем, на основе законов классической механики можно объяснить поведение довольно многообразных типов организаций и присущих им специфических устойчивостей в поведении. Перемещение макроскопических тел как на Земле, так и в космосе, различных рода колебательные процессы, многие свойства газов, жидкостей, твердых тел получают вполне естественное механическое объяснение, которое представляет собой синтез знаний законов механики со знанием о структуре или организации изучаемых процессов.

Однако мы хорошо знаем, что далеко не все в действительности может быть объяснено на основе механики, даже в области физических свойств окружающего нас мира. В результате мы имеем даже в физике довольно много типов описаний физических процессов, сопоставимых по степени общности с классической механикой.

Анализ такого рода типов описаний не только в физике, но и в других науках приводит к выделению класса описаний более высокого уровня обобщения.

Можно выделить, например, класс описаний, основанных на использовании динамических законов, безотносительно к тому, какого рода содержание они выражают. Это могут быть и законы механики, и законы

(285)
электродинамики, и законы онтогенеза, и функционирования психики. В таком случае любые явления описываются на основе различного рода законов, выражающих однозначную связь между различными состояниями систем, разделенными во времени. Но и на этом очень абстрактном уровне описания устойчивых свойств деятельности также можно зафиксировать значительное разнообразие. Наряду с однозначными законами мы можем в настоящее время обнаружить и класс вероятностных законов, которые характеризуют поведение изолированных систем и систем, находящихся в тесной связи с окружением и обменивающихся с этим окружением энергией, описывающих процесс самоорганизации, информационные процессы, телеономические связи, процессы развития. Следует заметить, что все они несводимы друг к другу, выявляют различные типы устойчивости, которые также существенно связаны с характером организации различных классов систем.

Информационные связи, например, принципиально не могут быть объяснены на основе описания передачи и преобразования энергии. Конечно, и получение информации, и процесс ее передачи не могут быть осуществлены без передачи энергии. Однако изучение только энергетической стороны информационных процессов не позволяет раскрыть самых существенных специфических их форм.

В самом деле, мы хорошо знаем, что для получения определенного количества информации необходимо затратить определенного количества энергии. Но качество получаемой информации зависит не только от возможности приложения для получения информации определенной энергии. Если говорить об обществе, то качество информации, определяемое ее содержанием, несомненно, зависит от уровня развития культуры.

В процессе передачи информации также необходима затрата энергии, но она опять же не связана с качеством информации, а зависит лишь от ее количества.

Воздействие же информации на объект определяется не энергией, связанной с этой информацией, а ее содержанием.

И в этом коренное отличие характера взаимодействий, осуществляющихся на базе информации.

Часы можно разбить в результате механического удара. Здесь степень разрушения будет непосредственно зависеть от энергии удара. С другой стороны, на человека можно воздействовать словом, и результат этого воздействия будет зависеть не от физической энергии, передаваемой при
этому, а от содержания информации, заключенной в ней. При этом одной и
тоей энергии можно человеку создать хорошее настроение, а можно до-
вести его до инфаркта. Воздействие лектора на слушателя, конечно, не за-
висит от того, в каком ряду тот сидит. Это и понятно. Ведь это воздействие
зависит не от передаваемой энергии, которая, конечно, зависит от расстоя-
ния между лектором и слушателем, а от содержания того, что говорит лек-
тор.

Как известно, чрезвычайно характерной чертой любого вида дея-
tельности человека является широкое использование знаков, оперирование
идеальным образом объекта, которое оказывается возможным благодаря
применению различного рода языков (объединного, научного, языка искус-
ства и т. п.), создает огромные возможности для развития общест-
ва и человека и во многом определяет специфику исторической эволюции.

Любой знак, конечно, представляется в определенной физической
оболочке. Если он произносится, то он реализуется в форме колебаний
воздуха. Если он передается письменно, то он оказывается зафиксированным
на бумаге или в другом соответствующем материале. Однако эта ма-
tериальная оболочка служит лишь основанием для значения знака, которое
определяет его функции в коммуникативном процессе.

Важно иметь в виду, что материальная компонента любого языка
необходима, но отнюдь не достаточна для понимания закономерностей его
использования. Значение любого языкового образования зависит, конечно,
от специфики того языка, к которому оно принадлежит, и от степени прак-
tического, теоретического или культурного освоения той действительно-
сти, для отображения которой оно используется. Кроме того, оно несет на
себе отпечаток конкретной ситуации, в которой этот знак применяется.

Любая область деятельности всегда проявляет определенные
черты единства и многообразия.

Если мы возьмем человеческую деятельность, то, конечно, для лю-
бых ее видов характерны общие черты: наличие субъекта, объекта, целей и
средств. Однако это единство проявляется в многообразии несводимых
dруг к другу родов человеческой деятельности.

Мы знаем, что в науке, инженерии, проектных разработках, в сфере
управления, хозяйственной деятельности, политике, искусстве реализуют-
ся специфические системы ценностей, решаются особого класса задачи и
применяются совершенно разные средства. То общее, что их объединяет,
конечно, очень важно.
Но в нем принципиально не может быть раскрыто все их богатство, своеобразие. Вместе с тем, следует обратить внимание на то, что нечто, представляя собой определенную целостность (скажем, определенный род человеческой деятельности), может быть в другом отношении рассмотрено как целостность определенных элементов, являющихся, в свою очередь, также специфическими образованиями. Так, в искусстве мы выделяем литературу, живопись, музыку, но каждый из этих родов искусства характеризуется многообразием имеющихся в них жанров.

5. КОНТУРЫ СОВРЕМЕННОЙ КАРТИНЫ МИРА

Учитывая такого рода соображения, следовало бы более внимательно отнестись к элементам антиредукционизма, которые находят свое проявление в реальном процессе познания, и иметь их в виду при построении современной картины мира.

Как отмечено выше, в прошлом постоянно осуществлялось стремление построить некоторую целостную единую картину мира на основе какого-либо небольшого количества простых исходных принципов. Сегодня представляется ясным, что в нашем стремлении построить целостную картину мира мы должны больше внимания уделять как тщательному изучению конкретных форм многообразия действительности, так и выявлению их взаимной связи. Ответ на эти вопросы, несомненно, лежит на пути исследования генезиса этих форм. И обсуждение данных проблем возвращает нас к одному из оснований редукционизма — к генетическому.

В свете данных современной науки очевидно, что все существующее есть результат эволюции. Концепция Большого взрыва, научные исследования, относящиеся к зарождению предбиологических систем и первых форм жизни, выявление закономерностей становления и развития биосферы и эволюции видов животных, исследования в области антропогенеза и социогенеза дают сегодня возможность отобразить основные этапы эволюции мира от возникновения элементарных частиц до появления человека и цивилизации.

Сегодня мы можем в рамках специально научной постановки вопроса обсуждать проблемы о том, когда и каким образом возникло вещество, когда и как во Вселенной появились легкие и тяжелые химические элементы, как произошли галактики и звезды, когда и как возникли Солнечная система и наша Земля. Мы можем высказывать научно обоснованные
предположения о времени и условиях возникновения живого на Земле во всех его основных формах.

Вот как выглядит эта картина.

Спустя 10^{-35} сек после начала Большого взрыва возникла барионная асимметрия Метagalактики, что проявляется сейчас в чрезвычайно малом количестве в ней антивещества. По прошествии 10^{-5} сек стали образовываться из кварков барионы и мезоны. На второй минуте жизни Метagalактики начали формироваться ядра гелия и других легких элементов. Галактики появились через 1 млрд. лет, а звезды первого поколения — через 5 млрд. лет. Атомы тяжелых элементов рождались в недрах звезд. Солнце, как звезды второго поколения, имеет возраст около 5 млрд. лет, Земля — приблизительно 4,6 млрд. лет. 3,8 млрд. лет назад на Земле произошло зарождение микроорганизмов, 1 млрд. лет существуют макроскопические формы жизни. Первые растения появились 450 млн. лет назад, рыбы — 400 млн. лет назад, млекопитающие — 150 млн. лет назад. И, наконец, антропогенез начался 1,6 млн. лет назад.

Следует отметить, что эта эволюция в мире от простого к сложному выделяется нами из колоссального многообразия других процессов, осуществляемых в космосе и отнюдь не сопровождаясь столь сильной направленностью.

Необходимо иметь в виду, что в нашей галактике существуют сотни миллиардов звезд, подобных Солнцу, и во Вселенной, изучаемой современной наукой, насчитываются десятки миллиардов галактик, подобных нашей. Конечно, и галактики, и звезды эволюционируют, но по крайней мере, подавляющее большинство линий эволюции, реализуемых в них, не заканчивается возникновением жизни и разума.

Идея о том, что жизнь и разум множественны во Вселенной, несомненно, сыграла в истории чрезвычайно прогрессивную роль. Она утверждала естественное происхождение жизни и разума, служила развитию и укреплению научных взглядов на мир.

Однако сейчас, в свете современных исследований этой проблемы, особенно за последние несколько десятилетий, в свете того, что, несмотря на значительные усилия, не удалось обнаружить никаких данных, свидетельствующих о внеземных формах живого, а тем более разума, целесообразно было бы с большим вниманием отнестись к точке зрения, согласно которой и жизнь, и разум уникальны в мире.
Так или иначе, мы можем констатировать сегодня тот факт, что жизнь и разум во Вселенной — если и не уникальные, то, по крайней мере, чрезвычайно редкие явления.

В целом же в мире происходит не только развитие от простого к сложному, но осуществляется еще и огромное число процессов противоположной направленности. Более того, если плотность массы в нашей Вселенной будет больше критической, то, как отмечают космологи, она начнет через некоторое время сжиматься, и во всей Вселенной будет происходить глобальная редукция всех сложных форм к более простым. Аналогичная ситуация сложится в будущем, если окажутся верными предложения о неустойчивости протона, которые развиваются в последнее время в физике элементарных частиц.

В процессе развития создаются различного рода структуры, которые имеют особое отношение к внешнему миру.

На основе фундаментальных законов физики возникают, вовсе их не отменяя, новые типы устойчивости, которые описываются в понятиях иного рода.

Можно сказать, что возникают качественные изменения.

Как это происходит, легко понять на основе анализа простейших примеров.

Если у нас имеется в сосуде одна молекула, то ее поведение в полной мере подчиняется законам механики. Однако, если в этом же сосуде увеличивать количество молекул, то вскоре система потеряет устойчивость, и ее уже нельзя будет описывать применяя законы механики. Она переходит в другое качество, которое уже характеризуется устойчивыми статистическими параметрами. При этом важно иметь в виду, что никакого нарушения законов механики не происходит, они просто оказываются неприменимыми.

Эта ситуация универсальна, она встречается во всех случаях, когда происходит усложнение систем и переход их в иное качественное состояние.

Так, жизнь в ее простейших формах возникла как следствие физико-химических законов. В основе функционирования любого объекта живой природы, конечно же, лежат физические и химические процессы.

Однако процессы жизнедеятельности не могут быть описаны только языком физики и химии. Их устойчивые характеристики, выявляющиеся...
как во взаимодействии частей организма, так и в его отношении к среде, описываются в понятиях большого числа биологических дисциплин и не могут быть поняты вне эволюционных представлений о живом. Любое проявление жизни представляет собой реализацию физико-химических законов. Но то, почему физико-химические процессы увязываются в организме в определенную цепочку, образующую, скажем, покровительственную окраску или какой-либо безусловный рефлекс, определяющий поведение животного, можно понять только рассматривая процесс эволюции вида. А он не может быть отображен только на основе законов и понятий физики и химии.

Современная картина мира должна включать представления о всеобщем характере эволюции, которая реализуется по отношению к любому объекту. В процессе этой эволюции возникают различных рода устойчивые целостные системы или типы систем, описываемые физическими законами.

Вообще говоря, типологизация систем может осуществляться по разным основаниям и с различной степенью обобщенности. Каждому типу систем при этом соответствуют свои, несводимые к другим, закономерности. При этом законы, на базе которых возникает новый тип систем, вовсе не нарушаются. Они становятся просто неприменимыми к описанию нового типа устойчивости.

6. ЕДИНСТВО НАУКИ И ЕЕ МНОГООБРАЗИЕ

Если теперь обратиться к процессу познания и попытаться оценить с позиций редукционистской программы реальное многообразие форм организации знания и методов его получения, то и здесь мы увидим ее ограниченность.

Наука подобна живой природе. Жизнь, в принципе, по сути своей не может существовать без ее воплощения во множестве форм. Так и наука. Ее полиморфизм обусловлен не только реальным многообразием действительности, но также и различным гносеологическим статусом всего ее инструментария, эффективность которого проявляется по-разному в различных познавательных ситуациях.

Многообразие форм существования эмпирического и теоретического знания (факты, эмпирические закономерности, тео-
рии, метатеории и т.п.), методов его получения (отдельные методы, исследовательские программы, методологические установки и т.п.) представляют непреходящую, фундаментальную характеристику науки, которая всегда будет ей присуща.

Единство же науки совсем необязательно должно проявляться во все большей редуцируемости одних форм организации научного знания и методов его получения к другим. Оно выражается во все более отчетливо вырисовывающихся взаимосвязях различных разделов науки, которые обнаруживаются при установлении реальных их возможностей в отображении действительности.

Итак, все существующее в мире характеризуется не только единством, но и многообразием, которые не могут быть поняты в отрыве друг от друга.

Редукционизм дает упрощенное представление об их соотношении.

В нем не находит правильного отображения специфичность явлений как в их генезисе, так и в их функционировании.

А тем самым искажается и представление о многообразии форм единства различных явлений, реализующихся как в объективном, так и в субъективном мире.

(293)

XIV. ИДЕАЛЫ НАУЧНОСТИ

1. ЧТО ТАКОЕ ИДЕАЛ НАУЧНОСТИ?

Идеал научности представляет собой систему познавательных ценностей и норм, выбор, статус и интерпретация которых зависят от широкого познавательного и социокультурного контекста.

Важно, однако, подчеркнуть, что социокультурная составляющая не находит своего прямого и непосредственного выражения в содержании идеала научности.

Его содержание составляют характеристики научного знания:

- описания и объяснения,
- построения и организации знаний,
- доказательности и обоснования.
Выбор и интерпретация этих характеристик в существенной мере зависят от социокультурных факторов.

Параллельно научному исследованию, а на первых этапах даже опережая его, происходит процесс осознания этих критериев в качестве регулятивных норм, т.е. процесс их конструирования в качестве стандартов и идеалов научно-познавательной деятельности.

Структура идеала научности в первом приближении может быть представлена в виде пирамиды когнитивных ценностей и основанных на них требований, предъявляемых к результатам научно-познавательной деятельности.

Идея иерархической структуры научного познания получила достаточно отчетливое выражение уже у И.Канта в его различении «понятия науки» и «науки в собственном смысле».

«Всякое учение, — писал И.Кант, — если оно есть система, то есть некоторая совокупность познания, упорядоченного согласно принципам, называется наукой».

С другой стороны, И.Кант утверждал, что «в любом частном учении о природе можно найти науки в собственном смысле слова лишь столько, сколько имеется в ней математики».

По поводу вершины пирамидальной структуры идеала научности существует относительное единство взглядов. Ориентированность на истиность соответствует наиболее фундаментальным познавательным интересам человеческого рода и общей тенденции развития научного познания. Основание этой пирамиды составляют минимальные требования научности, которые сформулированы ранее. Но при всей существенности универсальных характеристик научности их демаркационная сила и эвристический потенциал все же не высоки.

Большую значимость с современной точки зрения имеют требования научности, занимающие в общей пирамиде норм более высокую ступень. Эти требования также образуют некоторые целостные формирования, объединения и представляют собой то, что И.Кант имел в виду под выражением «наука в собственном смысле». Предметом нашего дальнейшего специального исследования будут идеалы, претендующие на роль выражения «науки в собственном смысле».

В современности идеал научности претерпевает существенные изменения. Происходит, можно сказать, радикальный, качественный переход от
веками утвердившихся классических представлений о науке к некоторому новому, еще формирующемуся ее образу и идеальному.

Этот переход выражается:
— в кризисе классических представлений об идеале научного знания во всех его формах и модификациях;
— в выявлении, анализе и резкой критике его фундаментальных основоположений;
— в выдвижении альтернатив основоположениям классического идеала научности;
— в попытках выдвижения новых эталонов, образцов научности.

В этих условиях открытыми и весьма острыми являются многие вопросы, связанные с идеалом научности.

(295)

Какова общая тенденция развития идеалов научности?
Возможны ли иные, альтернативные современные формы и идеалы научности?
Какие формы научности в наибольшей мере соответствуют идее гуманноориентированного, управляемого научно-технического прогресса?

2. ОСНОВАНИЯ КЛАССИЧЕСКИХ ПРЕДСТАВЛЕНИЙ О НАУКЕ

Классический идеал научности имеет «твердое ядро», состоящее из ряда регулярно воспроизводимых, стабильно действующих основоположений.

Эти основоположения тесно вплетены в интеллектуальную традицию, сформировавшуюся еще в античности, а потому длительное время имели характер некоторых «очевидностей», альтернатива которым большей частью не только не формулировалась, но даже и не осознавалась.

Выявление и рациональное критическое обсуждение основоположений классического идеала становятся возможными лишь в современности, когда после длительной эпохи развития наступает его фундаментальный кризис и отчетливо намечается переход к существенно иным представлениям об идеале научного знания. Однако, несмотря на очевидный кризис, фактически все основоположения классического идеала научности находят своих активных защитников вплоть до сегодняшнего дня.

По поводу ряда основоположений и их возможных альтернатив ведутся активные дискуссии, исход которых еще далеко не очевиден. Неко-
торые из них действительно имеют непреходящую ценность и, в уточенной, модифицированной форме, должны войти в структуру нового, формирующегося идеала научности.

ИСТИННОСТЬ КАК ЦЕННОСТЬ И ХАРАКТЕРИСТИКА ЗНАНИЯ

Одним из центральных основоположений классического идеала научности является истолкование в нем статуса истины.

Истинность является не только нормативной ценностью, но и необходимой описательной характеристикой любых познавательных результатов, претендующих на научность.

В соответствии с этими классическими представлениями, наука не должна содержать «никакой примеси заблуждений». Данное основоположение, наряду с неадекватным, ошибочным, имеет также важный непреходящий смысл.

По сути дела, здесь переплетены два утверждения:

во-первых, правильное, значимое и для нового идеала научности, согласно которому истина является центральным, наиболее сильным регулятивом научно-познавательной деятельности;

во-вторых, ошибочное, согласно которому истина должна быть необходимым атрибутом всех познавательных результатов, претендующих на научность.

ФУНДАМЕНТАЛИЗМ

Подлинное научное знание должно быть обосновано «фундаментальным» образом.

Данное основоположение в современности чаще всего обозначают как «фундаментализм». Фундаменталистская парадигма получила выражение во многих видах и формах.

Однако при всем этом многообразии, главной, центральной, базисной для нее была ориентация на принцип достаточного основания.

Уже во времена античности обнаруживается отчетливо выраженное стремление обладать не просто «мнением», возможно даже и истинным, но прочным и надежным знанием, которое не давало бы никаких поводов для сомнений в его истинности. Поэтому суть собственно научного познания усматривалась в решении задачи обоснования. Долгая история фундаменталистской парадигмы есть история постоянных поисков «начала познания», исходного пункта для процесса обоснования, «надежного фундамен-
та», на который могла бы опираться (сводиться к нему или выводиться из него) вся система научных знаний. К этому «фундаменту» предъявлялись весьма жесткие тре-

боавания. Он должен был быть абсолютно достоверным и надежным.

Если такой фундамент найден, все остальные теоретико-
познавательные проблемы, согласно фундаменталистским представленияm, решаются достаточно просто. Остается лишь с помощью этого «фун-
дамента» очистить зерна истины от плевел лжи, заблуждений и, сняв тем самым вопрос о гипотетичности, проблематичности всего остального зна-
ния, возвести величественное здание «строгой науки».

В современности фундаменталистская парадигма подвергается силь-
нейшей критике. Вместе с тем имеются и ее защитники.

Независимо от исхода дискуссии, на основе общих соображений можно утверждать:

обоснование является важнейшей процедурой научного познания, а признак обоснованности — необходимой характеристикой и универсаль-
ным критерием научности.

Однако на основе только общих соображений уже нельзя сказать, какое конкретное место признак обоснованности будет занимать в иерархи-
ческой системе норм нового идеала научности.

Ответ на данный вопрос требует исследования как возможностей, потенциала фундаменталистской парадигмы, тенденций ее исторического развития, так и аргументов, выдвигаемых в рамках противоположной, ан-
тифундаменталистской тенденции.

МЕТОДОЛОГИЧЕСКИЙ РЕДУКЦИОНИЗМ

Основу методологического редукционизма составляет представление о возможности выработки некоторого универсального (в историческом и предметном планах) стандарта научности.

Это представление служит питательной почвой двух главных гипо-
тез, определяющих стратегию методологического редукционизма.

Согласно первой из них, нормативный стандарт научности может быть сформулирован на базе «наиболее развитой» и «совершенной» обла-
сти познания или даже теории.

(298)
Согласно второй, которая может варьироваться по степени жесткости, все прочие области познания «подтянутся» к выработанному таким образом единому стандарту научности.

В соответствии со стратегией методологического редукционизма сегодня многие ученые и философы эталон научности усматривают в естествознании, а в самом естествознании чаще всего обращаются к физике. Имеется тенденция рассматривать эту область научного познания в качестве всеобщего образца.

Ориентация на физику ни в истории, ни в современности не является единственной. В истории философии и методологии науки известны мощные попытки реализовать стратегию методологического редукционизма и построить соответствующие идеалы на основе выдвижения в качестве образцового, эталонного типа познания не только физики, но и математики, и социально-гуманитарных наук.

Однако сегодня возникает вопрос и о возможностях и потенциале стратегии методологического редукционизма в целом.

СОЦИОКУЛЬТУРНАЯ АВТОНОМИЯ НАУЧНОГО ЗНАНИЯ И МЕТОДОЛОГИЧЕСКОГО СТАНДАРТА НАУЧНОСТИ

В соответствии с классическими представлениями фундаменталистски обоснованное научное знание и сами стандарты его обоснования должны быть полностью независимыми от социокультурных (социально-экономических, культурно-исторических, мировоззренческих, социально-политических) условий их формирования.

Выводы науки должны осуществляться в соответствии с универсальными стандартами обоснования и определяться только самой изучаемой реальностью независимо от социокультурных условий ее изучения.

Данное основоположение классического идеала научного знания, на первый взгляд, представляется простой модификацией тезиса о фундаменталистской обоснованности.

Действительно, оба этих основоположения тесно взаимосвязаны. Но все же последнее из них имеет для классических представлений об идеале научности наиболее существенный характер. Отказ от фундаменталистской парадигмы далеко не всегда влечет за собой отказ от представлений о социокультурной автономии научного знания и его методологических стандартов. Именно по данному вопросу сегодня
ведутся наиболее острые дискуссии и именно здесь намечается наиболее радикальный отход от классических представлений о научности.

Нередко в этих дискуссиях отстаиваются гипертрофированные полярные позиции:

либо полная социокультурная автономия науки, либо такая трактовка детерминации науки социокультурными факторами, которая ведет к фактически полной релятивизации научного познания.

Ясно, что реально речь должна идти о степени и глубине, формах воздействия социокультурных факторов на науку. Однако ответ на этот реальный вопрос, конечно же, невозможен без анализа аргументов, выдвигаемых в рамках обеих полярных позиций.

Таким образом, к числу главных основоположений классического идеала научности можно отнести:

выдвижение истинности в качестве описательной и, разумеется, нормативной характеристики;
фундаменталистскую обоснованность;
методологический редукционизм;
идею социокультурной автономии научного знания и его методологических стандартов.

Данные основоположения далеко не всегда в явной форме, но всегда в качестве некоторых «самоочевидных» являлись исходными принципами, точнее даже базовым фоном множества конкретных философско-методологических программ, в которых формулировался, развивался и модифицировался классический идеал научного знания.

В самих этих конкретных философско-методологических программах «твердое ядро» основоположений окружалось таким мощным «защитным поясом» дополнительных утверждений и аргументов, в котором угасали фактически любые возможные альтернативы.

Рассмотрение основоположений классического идеала научности в «чистом виде» становится возможным лишь на определенном этапе в результате взаимодействия ряда факторов:

развития самого конкретно-научного познания,
изменения социально-культурной ситуации,
изменения характера соотношения науки и общества.
К числу важнейших факторов, приведших к фундаментальному кризису классического идеала науки, относится «накопление» кризисов конкретных философско-методологических программ, базировавшихся на классических основоположениях.

На определенном этапе происходит как бы переключение «гештальта», и эти кризисы, расценивавшиеся ранее как частные неудачи реализации классических основоположений, начинают осознаваться как симптом гораздо более существенного, фундаментального кризиса.

3. ФОРМЫ КЛАССИЧЕСКОГО ИДЕАЛА

Конкретные философско-методологические программы, в которых получил свое выражение классический идеал научного знания характеризуются колоссальным разнообразием. Тем не менее, важнейшие формы выражения классического идеала научности связаны с некоторыми реальными образцами научного знания.

Разумеется, прямое отождествление идеалов научности и реальных образцов знания недопустимо. Однако все попытки вывести идеал научности даже из каких-либо самых общих «априорных» положений всегда завершались в конечном счете обращением к вполне конкретным, но, как правило, некритично, слепо воспринятым, а потому абсолютизируемым чертам научной практики.

Связь философско-методологических представлений об идеале научного знания с реальными образцами, эталонами в значительной степени определяется и одним из главных основоположений классического идеала — методологическим редукционизмом, в соответствии с которым идеал научности должен формулироваться на базе «наиболее развитой» и «совершенной» области знания. Кроме того, как хорошо известно, в случае «материального» воплощения в реальном образце, нормативно-ценностное значение такого идеала существенно возрастает.

(301)

Реально в истории в качестве важнейших форм воплощения классических принципов научности выступали математика, естествознание (преимущественно физика), гуманитарные науки. Соответственно, основными формами выражения классического идеала являлись:

математический идеал научности,
физический идеал научности,
гуманитарный идеал научности.
Поскольку «расцвет» каждого из них приходится на определенные исторические периоды, постольку эти идеалы могут рассматриваться и как определенные исторические этапы развития классического идеала научности.

МАТЕМАТИЧЕСКИЙ ИДЕАЛ

Еще в античности формируется представление о научности, как наиболее полно воплощенное в математическом знании.

Согласно взглядам античных мыслителей, достоверное знание получают двумя путями.

Во-первых, посредством мимезиса (припоминания) или умозрения. Таким способом пытались найти «первые начала», общие принципы, которые могли бы быть основой, «фундаментом» достоверного знания.

Во-вторых, это и был путь построения науки методом логической аргументации и дедукции из найденных первых начал более частных положений, следствий.

Ценность теории при этом определялась логической последовательностью выводов из принятых принципов.

Это представление о научности нашло наиболее полную и точную реализацию в логическом построении «Начал» Евклида, которые стали наиболее притягательным эталоном буквально во всех областях знаний: в философии, физике, астрономии, медицине и др.

Ориентация на этот эталон просматривается на протяжении более чем двух тысяч лет со времени его возникновения.

В Новое время математический идеал особенно энергично пропагандируется рационалистическим философским направлением.

Его основоположник — Р.Декарт, формулируя свои представления о научности, полагал, что достоверное знание достижимо посредством двух интеллектуальных актов: интуиции и дедукции.

Методы умозрения и дедукции часто использовали в то время при построении многочисленных натурфилософских систем.

Геометрический способ доказательства в философии пытался применять Б.Спиноза.

Безусловное превосходство математического типа научности ярко выражено в позиции Г.Лейбница, который, по его собственному признанию, был очарован «математическими сиренами».

(302)
Наконец, рационалисты Нового времени, развивая мысль о системном характере научного знания, приходят к идее единой универсальной науки, построенной по образцу математики.

Однако и в Новое время стремление соизмерять всякое знание с математическим идеалом встречает серьезные возражения со стороны эмпиризма.

Начиная с Нового времени все большее предпочтение отдается физике.

Постепенно математика утрачивает роль единственной и непререкаемой эталонной науки.

Попытки сформулировать представление о научности, ориентируясь преимущественно на математику, как правило, связаны с выдвижением на первый план таких ее реальных, существенных черт, как логическая ясность,
строго дедуктивный характер ее построений,
возможность получения результатов путем логического вывода из основных посылок,
непреложность выводов,
определенение научности, обоснованности установлением соответствия выводов основным посылкам, выраженным в аксиомах.

Несомненно, эти требования отражают действительную специфику математики, но сформулированные в адекватном для математического понимании виде, они не могут претендовать на всеобщность.

Так, практическое применение основного для математики критерия научности — критерия непротиворечивости — в естественнонаучной области имеет серьезные ограничения. Противоречия в теории могут быть выявлены посредством формального анализа ее структуры, если она достаточно строго построена. Однако далеко не все даже естественнонаучные теории могут быть построены достаточно строго и тем более формализованы. Не лишне также напомнить хорошо известный философам факт, что попытки безусловного применения математического стандарта при объяснении природы нередко вырождались в абстрактные натурфилософские построения...

Условия применимости и границы значимости математического стандарта научности удачно определил Ю.В. Чайковский:
«В строгом смысле доказательства возможны только в математике, и не потому, что математики умнее других, а потому, что сами создают вселенную для своих опытов, все же остальные вынуждены экспериментировать во Вселенной, созданной не ими. Доказательство означает неопровержимую демонстрацию невозможности какого-то события (любая теорема допускает формулировку «такое-то множество пусто»), но утверждать невозможность бессмысленно, если в реализации события могут сыграть роль неизвестные обстоятельства. Это губит рано или поздно любое физическое «доказательство».

Тем не менее, ориентация на математический идеал научности как на всеобщий просматривается и в современности. В XX веке ее мощно выразили неокантианцы Марбургской школы, а также такие ученые, как В.А.Стеклов, Д.Гильберт, М.Бунге и др. Однако необходимо учитывать, что сама математика уже далеко ушла от когда-то ею же порожденного классического понимания математической строгости. Как подчеркивает известный американский математик М.Клайн, «Нынешнее состояние математики не более чем жалкая пародия на математику прошлого с ее глубоко укоренившейся и широко известной репутацией безупречного идеала истинности и логического совершенства».

ФИЗИЧЕСКИЙ ИДЕАЛ

Формирование нового, физического идеала происходит в обстановке, возникшей в связи с бурным развитием экспериментальных исследований.

Многие из основополагающих черт нового идеала формулируются Ф.Бэконом, который писал:

«Самое лучшее из всех доказательств есть опыт, если только он коренится в эксперименте».

С позиций этого идеала существенному переосмыслению подвергается прежде всего значимость математики в познании.

Ф.Бэкон осознанно рассматривает математику как вспомогательное средство, как «приложение к естественной философии».

Локк, разграничив науки на три разряда, помещает математику в раздел «естественной философии», где центральное место занимает физика.

Наконец, от Дж.Беркли через Д.Юма вплоть до неопозитивизма и современной «философии науки» ведет свое начало трактовка математики как конвенциональной, аналитической дисциплины, как лишь аппарата, инструментального средства научного познания.
Подобная интерпретация математики означает по существу лишение ее статуса науки.

Эталоном естественнонаучного идеала первоначально выступала механика, которую сменил, по сути, весь комплекс физического знания.

Ориентация на этот идеал в химии ярко была выражена, например, П. Бертло, в биологии — М. Шлейденом, а Г. Гельмгольц прямо утверждал, что «конечная цель» всего естествознания — «раствориться в механике». Его влияние отчетливо обнаруживается и в традиционно гуманитарных областях. Воспринятый социально-гуманитарными науками физико-математический идеал начиная с XVII в. и вплоть до современности стимулировал многочисленные попытки построения «социальной механики», «социальной физики», «социальной инженерии».

В современности, в наиболее сильной и резкой форме ориентация на физический идеал была выражена в неопозитивизме, представители которого настаивали на универсальном и однозначном, решающем значении процедур верификации и фальсификации, осуществляемых в конечном итоге через физические приборы.

Несомненно, комплекс физических наук демонстрирует высокоразвитое знание. Но насколько полны и совершенны выявляющиеся в нем требования научности? Какова надежда на возможность «подтягивания» к ним других областей знания?

Прежде чем пытаться ответить на эти вопросы, охарактеризуем кратко сами требования.

— Центральная роль в этом типе научности принадлежит эмпирическому базису.

По сравнению с математическим типом знания, где допустимы любые логически возможные аксиомы, физическая аксиоматика имеет фактурный характер, детерминирована имеющейся эмпирической информацией.

— Физическое знание рассматривается как гипотетико-дедуктивное, а потому как имеющее в той или иной степени вероятностный характер.

Заключения физики не так непреложны, логически допустимо нарушение ее законов в отличие от математических формул.

— Ценность научной гипотезы определяется здесь прежде всего плодотворностью ее прогностической силы, открываемыми ею возможностями предвидения новых фактов и явлений.
Познавательный интерес физического исследования фиксирован не столько на предельной строгости и законченности теории, сколько на раскрытии реального содержания теоретических положений, на развитии теории с целью охвата ею большего класса явлений.

Физический стандарт научности, безусловно, доказал свою высокую эвристичность при создании многих теорий, составляющих гордость современной науки.

Вместе с тем стремление придать ему всеобщий характер встречается сегодня с довольно серьезными возражениями и препятствиями.

Например, связанные с абсolutизацией физикалистского идеала интерпретации математики — либо как сугубо эмпирической дисциплины, либо как только «языка науки» — явно односторонни и не выражают ее действительной природы. Математика является полноценной наукой, но это не означает необходимости следования в ней требованиям физического идеала.

Так, Дж. Бернал отмечает, что господство ньютоновского идеала научности имело значительные негативные последствия для развития математики. «В Англии, — пишет Дж. Бернал, — это обстоятельство сдерживало развитие математики вплоть до середины XIX века».

Серьезные трудности возникают при распространении данного стандарта научности на биологическое знание. Нередко это ведет к констатациям «теоретической незрелости» биологии, принижению значимости специфики биологического знания, особенностей собственно биологического содержания.

Еще более серьезные трудности возникают при распространении значимости этого стандарта научности на социально-гуманитарное знание.

Как метко заметил в свое время Н. К. Михайловский, абсолютизация физического стандарта приводит к такой постановке общественных вопросов, при «которой естествознание дает Иудин поцелуй социологии». Объективизм «любой ценой» часто ведет к проявлению непризнанного, скрытого субъективизма, к функционированию псевдообъективности.

ГУМАНИТАРНЫЙ ИДЕАЛ

В центре внимания сторонников гуманистического идеала — активная роль субъекта в познавательном процессе:

— в формировании научного знания,
— в определении путей и методов исследовательской деятельности,
— в оценке ее результатов.

Разумеется, активность субъекта в определенных аспектах признается и сторонниками математического и естественнонаучного идеалов. Никакое познание просто немыслимо без участия познавающих субъектов.

Тем не менее, различия в трактовке вопроса о роли субъективного фактора в познавательном процессе между приверженцами различных идеалов очень существенны.

Во-первых, сторонники гуманитарного идеала настаивают на более широкой трактовке самого субъекта познания. Под субъектом познания они хотели бы понимать не только носителя «разума», но и человека во всем богатстве его способностей и возможностей, со всеми его чувствами, желаниями и интересами.

Во-вторых, роль субъекта, согласно взглядам сторонников гуманитарного идеала, не сводится только к участию в познавательном процессе как таковом, но распространяется также на оценку познавательных результатов. Другими словами, такие субъективные факторы как интересы, потребности, цели входят в сами стандарты оценки научности гуманитарного знания.

Такое понимание особенностей гуманитарного познания явно не согласуется с классическими представлениями об идеале научности и вступает в противоречие с одним из главнейших его основоположений о социокультурной автономии научного знания и методологического стандарта научности.

Специфика гуманитарных наук действительно состоит в том, что они в конечном счете ориентированы на получение результатов, соотносящихся с целями, ценностными установками развивающегося социально-исторического субъекта.

Конечно, и гуманитарные науки продуцируют постоянно расширяющееся специальное знание, демонстрируя тем самым очевидный познавательный прогресс. Однако вся эта внутринаучная работа, как отмечают приверженцы гуманитарного идеала научного знания, получает свой подлинный смысл и значение лишь тогда, когда она включается в связь с общими интересами, которые придают фактам соответствующий ценностный статус. Для приобретения культурного влияния, что составляет основную
задачу гуманитарных наук, они должны превратить специальное знание в ценностно-отнесенное и сделать его достаточно общим достоянием.

Отсюда вытекает то важное обстоятельство, что социокультурная реальность время от времени рассматривается новыми глазами, с точки зрения иной системы интересов, сложившихся в новых социально-исторических условиях. История гуманитарных наук, по их мнению, зависит не только, а может быть, и не столько от специального познавательного прогресса, сколько от исторических изменений общей системы социокультурных интересов.

И все же общественный интерес в науке не может, не должен подменять научных интересов. Помимо социокультурной, всякое научное познание, в том числе и гуманитарное, непременно должно характеризоваться внутренней, предметной обусловленностью.

Утрата этой обусловленности есть, по сути, утрата научности, ее важнейшего, наиболее существенного атрибута. Поэтому общественный интерес в своем непосредственном виде в гуманитарном познании не может быть решающим критерием научности. Его применение предполагает обязательное сочетание с другими общенаучными нормами, критериями или, говоря шире, традициями.

Гуманитарное познание должно реализовываться не вне, а непременно в рамках достаточно широко трактуемого общенационального подхода.

Сам по себе гуманитарный идеал научности не может претендовать поэтому на совершенно самостоятельное значение даже в своей «собственной» предметной области.

Однако, когда основы научности в основных моментах уже определились, гуманитарный идеал способен внести и вносит существенную коррекцию в общие представления о научности, более того, может рассматриваться как переходная ступень к некоторым новым представлениям о научности, выходящим за рамки классических основоположений.

* * *

Итак, можно сделать совершенно определенный вывод: ни одна из «программ» не привела к достаточно успешной реализации классических основоположений.

— Ни один из вариантов фундаменталистской парадигмы не привел к обнаружению такой «окончательной» позна-
вательной инстанции, которая была бы в состоянии совершенно однозначно отделить истинное научное знание от ложных, неадекватных представлений.

Предложенные стандарты не были достаточно «жесткими», чтобы гарантировать отсутствие всяких «инородных» включений в «тело» науки.

Так, математический стандарт «пропускал» мимикрирующие под него различные схоластические и натурфилософские построения.

Физический стандарт, даже в его наиболее жесткой позитивистской интерпретации, с одной стороны, отсекал значительную часть самой науки, с другой стороны, допускал в «тело» науки различные абсурдные построения вроде астрологии и магии, так как эти построения могли случайным образом получить эмпирическое подтверждение.

Социально-гуманитарный стандарт, как хорошо известно, далеко не в состоянии гарантировать исключения разных субъективистских, «идеологических» (в смысле ложного сознания) спекуляций.

— Несостоятельным оказался и методологический редукционизм.

Ни одна из «программ» подчинения всего знания какому-либо одному из идеалов не была успешно реализована до конца.

Это, конечно, вовсе не означает, что такие усилия были безосновательны и совершенно бесплодны. Как раз напротив, часто они приводили к положительным результатам, способствуя в конечном счете развитию науки. Но нельзя забывать, что подобные попытки имели и немало негативных последствий.

Потому в выработке современных представлений о системе норм и стандартов научности ориентация лишь на одну из областей знания представляется явно несостоятельной.

Необходимо исходить из факта наличия существенно различных форм реального научного знания, особых типов научности.

Единство науки, так же, как и единство мира, вовсе не должно означать их единообразия.

Наличие особых форм, типов научности определяется прежде всего многообразием форм объективной действительности, отражаемой в науке, а также тем, что наука представляет собой многофункциональный феномен, удовлетворяющий весьма различные потребности современной куль
туры, как материальной, так и духовной, что, в свою очередь, находит определенное отражение в структуре научности.

Наконец, завершая выводы относительно проблем реализации классических основоположений, необходимо отметить, что в связи с существенными особенностями гуманитарных наук, а также резко возросшей связи всей науки с потребностями общества, под сомнение поставлено положение о социокультурной автономии научного знания и методологического стандарта научности.

Все это дает основание говорить о кризисе классических представлений об идеале научного знания во всех его формах и модификациях. Осуществляемая в современности критика этих основоположений в «чистом виде» сопровождается выдвижением альтернатив, являющихся в большинстве случаев прямыми антитезами классическим основоположениям. Это антифундаментализация, плюрализация, экстернализация в трактовке идеала научности. Именно в русле данных тенденций и идет формирование новых, существенно иных представлений об идеале научности.

4. ОСНОВНЫЕ НАПРАВЛЕНИЯ КРИТИКИ

Новый, неклассический идеал научного знания находится еще в процессе формирования. Этот процесс идет по двум основным направлениям:
во-первых, он проявляется в резкой критике основоположений классического идеала;
во-вторых, выражается в попытках формулировки некоторых позитивных альтернатив классическому идеалу научного знания.

Рассмотрим формирование нового идеала научного знания последовательно по этим двум основным направлениям.

Формирование нового идеала научности через критику классического идет, как было указано выше, по линии антифундаментализации,
плурализации,
экстернализации.

В чем суть этих тенденций, отчетливо проявляющихся в современной мировой философии и методологии науки?
АНТИФУНДАМЕНТАЛИЗАЦИЯ

Фундаменталистская парадигма на протяжении всего огромного по длительности срока своего существования претерпевала перманентный кризис. Обосновывающие инстанции, с которыми связывали надежды «окончательного» обоснования, с течением времени обнаруживали свое несовершенство и проблематичность.

Как крупнейшее изменение в рамках фундаменталистской парадигмы можно рассматривать переход от математического идеала к физическому идеалу научности и связанную с этим переходом смену обосновывающих инстанций.

В первом случае в качестве идеальной обосновывающей инстанции выступали аксиомы и постулаты разума, во втором — познавательные элементы эмпирического уровня.

Относительно более мелкие изменения фундаменталистской парадигмы происходили в рамках как математического, так и физического идеалов. В основном они были связаны с различной интерпретацией обосновывающих инстанций.

Так, в рамках математического стандарта научности постепенно отказались от требований самоочевидности и наглядности, предъявлявшихся к аксиомам и постулатам на ранних стадиях развития этого стандарта. Эти требования были заменены требованиями полноты, независимости, непротиворечивости системы аксиом.

Однако, несмотря на постоянно переживаемый, перманентный кризис, фундаменталистская парадигма всякий раз успешно выходила из него посредством выдвижения новых «окончательных» обосновывающих инстанций, либо путем снятия сомнений в совершенстве традиционного фундамента, либо посредством его новых интерпретаций.

Радикальное сомнение в состоятельности фундаменталистской парадигмы в целом объективно возможным становится на базе широкого развития гуманитарных наук и осознания особенностей реальных норм и ценностей осуществляемого в них познания реальности.
Гуманитарное познание по своей сути является принципиально не замкнутым, открытым по отношению к социально-культурным воздействиям. Субъективные элементы социально-исторического порядка являются неотъемлемой составной частью гуманитарно-научных исследований.

Социально-культурная обусловленность гуманитарного познания в сочетании с идеей исторической изменчивости социально-культурных факторов, строго говоря, гасит любую надежду на достижение «окончательной» его обоснованности.

Однако ранние выразители и защитники гуманитарного идеала не решались еще на радикальный разрыв с классическими представлениями о научности.

В целях достижения классической фундаменталистской обоснованности в гуманитарном познании неокантианцы, в частности Риккерт, приписывали статус обосновывающей инстанции — системе ценностей, по-мешая их в особое царство, лежащее «по ту сторону» субъекта и объекта. Дильтей считал главной задачей гуманитарных наук достижение подлинного понимания замыслов творцов и смысла их произведений, мотивов поведения исторических деятелей, социокультурной значимости исторических событий. Эту задачу вполне в духе фундаментализма он видел возможным разрешить посредством специфических герменевтических методов, которые приводят к достижению единства между интерпретатором и интерпретируемым. Одним из главных приемов при этом является так называемый эпistemологический или герменевтический круг, в движении по которому интерпретатор, соотносясь с реальностью, посто-

явно уточняет смысл интерпретируемых текстов или исторических событий.

Несмотря на объективную возможность преодоления фундаменталистской парадигмы с позиций гуманитарного идеала, эта возможность не была реализована его ранними сторонниками и выразителями.

Гораздо более существенной по своим последствиям для судьбы фундаменталистской парадигмы оказалась имманентная критика естественнонаучного варианта классического идеала научности, и прежде всего кризис логического позитивизма.

Здесь важно отметить ключевое значение переинтерпретации роли интерсубъективного опыта для научного познания, осуществленной в концепции К.Поппера.
Опыт в концепции Поппера не является больше фундаментом, обосновывающей инстанцией познания, его функция состоит исключительно в том, что он представляет собой критическую, т.е. потенциально опровергающую инстанцию для различных познавательных конструкций, выдвигаемых научных гипотез. Значение опыта состоит не в подтверждении, а в опровержении, фальсификаци коротных гипотез. Непосредственным и ближайшим следствием такого переосмысления функции опыта является «фаллибилизм», учение о гипотетическом характере познания, оставшемся без поддерживающего его фундамента.

«"Коперниканский переворот" в учениях о познании и науке, которым мы обязаны прежде всего К.Попперу, — пишет Х.Шпиннер, — есть переход от ориентированного на оправдание эпистемологического центризма и фундаментализма к фаллибилизму».

Антифундаменталистские идеи и представления в современности пытаются распространить не только на естествознание, но и на математику.

Так, И.Лакатос, как известно, в свое время дал «квазиэмпиристскую» трактовку математики, важным элементом которой было отрицание ее фундаменталистской обоснованности (посредством очевидных аксиом) и особой надежности. Еще ранее антифундаменталистская трактовка математики, но в существенно иной форме была дана Л.Витгенштейном.

Наиболее обстоятельная и целенаправленная критика фундаментализма в его обобщенном виде осуществлена представителями "критического рационализма" Г.Альбертом и Х.Шпиннером.

«ТРИЛЕММА МЮНХАУЗЕНА»

Г.Альбертом было выдвинуто и многократно воспроизведено радикальное, как ему представляется, возражение против обобщенной фундаменталистской модели научного познания.

Это возражение, состоящее в обнаружении порочного недостатка в самой структуре фундаменталистской парадигмы, получило наименование "трилеммы Мюнхаузена".

Классический познавательный идеал, по мнению Г.Альберта, встречается с радикальными затруднениями в своих попытках обнаружения "фундамента", "последнего основания" для всей познавательной конструкции. Всякая попытка "абсолютного" обоснования оказывается такой
же безнадежной, как и попытка вытащить себя из болота за собственные волосы.

Требование абсолютного обоснования ведет к трем возможным, но равным образом неприемлемым решениям:
 бесконечному регрессу, который неосуществим;
 эпистемологическому кругу, который неэффективен;
 остановке процесса обоснования, которая всегда в той или иной степени произвольна.

Таким образом, антифундаменталистская тенденция выглядит достаточно мощной и представительной. Она просматривается в Истолковании всех важнейших областей научного познания:
 математического, естественнонаучного, гуманитарного.

В ней выражен действительно существенный отход от классических представлений об идеале научного знания.

Следует отметить, что здесь излишне резко противопоставляются процессы обоснования и развитие знания.

Между тем, такого резкого различия в развития научного знания нет и быть не может. Обоснование — важнейшая научная процедура, неотъемлемая часть научного арсена. В действительности обоснование является неотъемлемым момен том развити науки.

Критика фундаментализма и противопоставление обоснования и развития знаний имеет глубокий смысл и огромное значение в нормативно-ценностном аспекте. Реально здесь речь идет о статусе обоснования как норматива научности. Объективно критика фундаментализма ведет к понижению статуса этого норматива, к ликвидации претензий признака обоснованности в его традиционной трактовке быть ведущим в новом познавательном идеале.

ПЛЮРАЛИЗАЦИЯ

В современной западной философии и методологии науки наиболее влиятельны концепции, в которых наука рассматривается не как единое, связанное целое, а как совокупность различного рода парадигм (Кун), эпистем (Фуко), исследовательских программ (Лакатос), исследовательских традиций (Лаудан), идеалов естественного порядка (Тулмин), методологи-

—— Правильно: «неотъемлемым». — Яр.
численных стандартов, определяемых разными познавательными интересами (Хабермас).

Широкую известность и большое влияние приобрела методологическая концепция П.Фейерабенда, где плюралистическая тенденция в истолковании науки доведена до своего логического предела.

Идея плюрализма научного познания объединяет сегодня западных философов самых различных направлений: постпозитивизма, герменевтики, структурализма, социологии знания.

Получив свое первоначальное выражение, главным образом, в концепциях методологов, ориентированных на социально-гуманитарные науки, идея плюрализма приобрела наивысшую популярность и силу последующего использования ее в концепциях постпозитивистов, ориентированных, как известно, на комплекс естественнонаучных, главным образом физико-математических концепций.

Причины столь широкого, почти всеобщего распространения плюралистических трактовок науки коренятся не только в общем усилении идеи плюрализма в современной культуре. Не в последнюю очередь это явление порождено прогрессом самого научного познания:

— интенсивным обновлением и существенным преобразованием фундаментальнейших научных понятий,
— открытием новых методов,
— расширявшимся многообразием исследовательских подходов,
— возрастанием воздействия науки на все стороны общественной жизни,
— усилением интереса к науке,
— расширением конкретных знаний об этом уникальном феномене современности.

Весь этот комплекс факторов сделал особенно очевидной несостоятельность долгое время господствовавших в философии и методологии идей о социальной автономии науки, кумулятивном характере научного прогресса и методологическом единстве всех областей научного знания. Кризис этих идей в современной методологии науки повлек за собой их вытеснение большей частью противоположными.

Уровни, формы, виды выражения плюралистической позиции в истолковании науки весьма различны.
— Она может выражаться на уровне эмпирического описания, например, таких наук, как социология, психология, социогеография.
— Другой уровень выражения плюрализма — теоретически обоснованный.
В свою очередь, теоретически обоснованный плюрализм также разнообразен.
— С точки зрения одних методологов, например, И. Лакатоса, Г. Альберта, плюрализм, многообразие допустимо и должно быть признано позитивным по отношению к исследовательским подходам и конкретно-научным теориям об одной и той же предметной области, но не по отношению к стандартам их оценки, т. е. не по отношению к стандартам научности.
— Другие методологи (П. Фейерабенд, Х. Шпиннер) идут гораздо дальше и не только распространяют плюрализм на стандарты научности, но утверждают о фактической равноценности стандартов научности и иных познавательных стандартов.
Так, П. Фейерабенд исходит из того, что разделение науки и ненауки не только искусственно, но и вредно для развития познания. Для развития познания важно получать определенные содержательные результаты, а не «тупоумно» следовать одному определенному стандарту, превращая его в фетиш.
«Все методологические предписания, — утверждает П. Фейерабенд, — имеют свои пределы, и единственным «правилом», которое сохраняется, является правило "все дозволено"».
Развивая эту мысль, он идет «до конца» и пытается доказать фактическую равнозначность науки и мифа.
В этих рассуждениях имеется определенный рациональный смысл. Критика П. Фейерабенда априорного убеждения в превосходстве современной научно-технической цивилизации является справедливой. Достижения ранних культур весьма значительны даже в сопоставлении с нашим временем.
Справедливым представляется и предложение П. Фейерабенда рассматривать иные традиции и формы человеческого существования не только и не столько в качестве «музейных экспонатов», сколько в качестве открытых возможностей нашей собственной жизни. Особенно актуально
это в современных условиях, когда выявились не только достижения, но и проблемы, противоречия современной научно-технической цивилизации.

И все же, учитывая все эти реальные аспекты, обусловившие позицию П.Фейерабенда, нельзя согласиться с его тезисом о фактической равнозначности науки и мифа.

Научное теоретическое понимание дает гораздо более широкий по своему охвату срез объективной действительности и, в отличие от других форм понимания, дает объяснение наиболее существенным объектам современной жизненной практики — технологическим системам.

Что касается альтернативных проектов человеческого существования, то по современным оценкам, как подчеркивалось выше, они могут иметь лишь вспомогательное, но не ведущее значение для решения современных фундаментальных проблем развития человеческого рода.

Нет абсолютной равнозначности и между различными стандартами научности.

В противоположность П.Фейерабенду можно все же утверждать, что дозволено не все, не всегда и не везде.

Плюралистическая тенденция, также как и антифундаменталистская, имеет прежде всего критическую направленность, ведет к преодолению классических представлений об идеале научного знания.

— Однако, если антифундаментализм подрывает классический идеал как бы «изнутри», раскрывая несостоятельность идеи «абсолютной обоснованности»,

— то плюрализация подрывает монополистические притязания классического идеала преимущественно «извне», демонстрируя и обосновывая множественность и эффективность иных идеалов и стандартов.

Связь антифундаменталистской и плюралистической тенденций обнаруживается не только в общекритической направленности, но и еще в одном, с точки зрения целей нашего исследования, особенно важном и существенном плане.

Для обеих тенденций характерно рассмотрение в качестве эталонного не состояния «готовой», «завершенной» науки, а науки, находящейся «на марше», в процессе развития.

Другими словами, в соответствии с этими двумя тенденциями, наука и выработанные в ней методологические стандарты все больше рассматриваются не как самоцель, а как средство решения проблем.
На смену фундаменталистской обоснованности как ведущей ценности в классическом идеале научности, все больше выдвигается критерий эффективности в решении проблем:

способность науки быть эффективным средством решения разнообразных познавательных проблем.

Важно отметить, что даже в крайней «анархистской» форме плурализма эта ценность сохраняет особое значение, являясь универсальной по отношению ко всем системам методологических стандартов.

Так, Х.Шпиннер прямо указывает, что «способность науки решать проблемы» является общей основой сравнения, «метаметодологическим стандартом».

И даже у П.Фейерабенда эпистемологические стандарты обязаны доказать свою эффективность в решении проблем определенной формы жизненной практики.

Таким образом, способность решать проблемы выдвигается в качестве ведущей ценности нового, формирующегося идеала научности.

Сам новый, формирующийся идеал научности, в соответствии с этой тенденцией, должен допускать различные «наборы» методологических стандартов, объединяемых в относительно самостоятельные идеалы научности, конкурируя друг с другом в решении научных проблем.

ЭКСТЕРНАЛИЗАЦИЯ

Экстерналистская тенденция, все более проявляющаяся в современной методологии науки, выражает наиболее радикальный разрыв с классическими представлениями об идеале научного знания.

Фундаменталистски обоснованное научное знание, согласно классическим представлениям,

— должно быть полностью независимым от социальных (социально-экономических, культурно-исторических, мировоззренческих, социально-психологических) условий его формирования;

— выводы науки должны определяться только самой изучаемой реальностью, но не социальными условиями ее изучения.

Строго говоря, сами процедуры обоснования и интерсубъективной проверки для классических представлений о научности

(kupov_v_i_i_dr_filosofiya_i_metodologiya_nauki)
имели подчиненное значение. Эти процедуры должны были обеспечить полную социальную автономность, независимость и стабильность, а тем самым, как казалось, и объективность продуктам научной деятельности.

Принятие общего тезиса о социальной обусловленности научной деятельности сочетается обычно с существенно различными представлениями и оценками относительно характера и степени этой обусловленности. Для правильного понимания сути проблемы принципиально важно учитывать, по крайней мере, три аспекта науки:

— актуальное исследовательское поведение ученых;
— методологические стандарты оценки результатов научно-исследовательской деятельности;
— содержание научных утверждений, гипотез, теорий и т.д.

Сегодня фактически не подвергается сомнению важная роль социокультурных факторов в первом из этих аспектов. Общие социально-культурные условия, а также моральные нормы и даже личная склонность могут воздействовать на выбор проблемы исследования, наиболее эффективного метода исследования. Социальные, мировоззренческие, политические факторы могут значительно стимулировать либо затормаживать исследования в какой-либо частной проблемной сфере, исследовательской области.

Итак, согласно современным представлениям, в данном аспекте социокультурные ценности входят в научно-исследовательский процесс важным мотивирующим фактором.

Подчеркивая общее согласие по данному вопросу в наше время, отметим, однако, что для классических представлений было характерно убеждение в возможности создания «логики открытия», которая бы позволяла вне зависимости от всяких «внешних» социокультурных условий получать важные познавательные результаты. Так что современное согласие есть результат довольно длительного развития, в ходе которого проходило постепенное смягчение ригоризма методологического мышления в отношении зависимости научного познания от социокультурных ценностей.

Эта общая позитивная тенденция в методологическом мышлении приводит к попыткам некоторых методологов, главным образом,... представителей «социологии знания», доказать возможность прямого влияния социокультурных факторов на содержание научных
утверждений, гипотез и т.д. (т.е. третий из выделенных аспектов науки). Однако ни одна из известных попыток не оказалась успешной.

Таким образом, мы не можем согласиться с тезисом о прямом влиянии внешних факторов на научное знание.

Это влияние всегда опосредовано определенными методологическими стандартами.

Что касается самих методологических стандартов, образующих в целом некоторый идеал научности (второй из выделенных нами аспектов науки), то они, взятые в комплексе, как уже неоднократно подчеркивалось выше, являются сложными образованиями, испытывающими двойную детерминацию.

— С одной стороны, они детерминированы тем или иным познавательным интересом человеческого рода, находящим преломление в определенных культурно-исторических условиях.

— С другой стороны, они детерминированы тем аспектом объективной реальности, тем классом решаемых с помощью этого стандарта проблем, на который направлен соответствующий познавательный интерес.

Как уже отмечалось, каждый из выделенных нами ведущих классических идеалов научности (математический, физический, гуманитарный) имеет в своей основе определенную базисную познавательную ориентацию, определяющую характер задаваемых бытию вопросов, особую комбинацию методов, приемов и процедур для получения ответов на эти вопросы и, что самое главное, определяющую, в конечном счете, специфическую интерпретацию требований научности, их иерархию в этом идеале:

математический идеал — ориентирован на изучение возможных миров,
физический идеал — гуманитарный идеал — на постижение объективного мира, исследует реальность в аспекте норм, идеалов и ценностей.

(322)

Каждая из базисных познавательных ориентаций прочно укоренена в самой структуре человеческой деятельности:

— первая имеет своим истоком универсальные свойства человеческой деятельности как материальной, так и идеальной;

— вторая вытекает преимущественно из интересов практической, предметной деятельности;
— третья коренится в потребностях расширения и укрепления меж-
человеческого общения.

Однако лишь в зависимости от конкретно-исторических условий, ве-
душие, базисные познавательные ориентации могут получить соответс-
твующее развитие и привести к возникновению соответствующих позна-
вательных идеалов.

Например, формирование математического идеала научности в зна-
чительной степени определялось своеобразными социально-
экономическими условиями античного общества. Стремление к рацио-
нальному объяснению, логической последовательности в рассуждениях,
строгой доказательности, т.е. условия, на основе которых только и мог
развиться идеал дедуктивной теории, выведенный из очевидных принци-
пов, существенным образом определялось, в частности, политическими
особенностями древнегреческой жизни. Демократическое устройство гре-
ческого общества, хотя и на рабовладельческой основе, давало определен-
ный простор для развития личности, а интенсивная политическая жизнь
требовала развития искусства аргументации, причем аргументация именно
рациональной.

Такая же конкретно-историческая связь обнаруживается и в случае
формирования естественнонаучного идеала научности.

Прогресс техники, производства в новых социально-экономических
условиях нарождающегося капиталистического строя оказал самое серьез-
ное воздействие на развитие научного познания.

Складывающаяся в современности конкретно-историческая ситуа-
ция, поставившая под вопрос само существование человеческого рода, настолько требует рассмотрения действительности не только в аспекте,
хотя и важных, но все же частных перспектив, но и в аспекте универсаль-
ных человеческих потребностей и ценностей.

Также и эта потребность, разумеется, фундаментальнейшим образом
укоренена в структуре человеческой деятельности, но никогда ранее це-
лостное видение реальности не требовалось с такой настоятельной необхо-
димостью и не осознавалось с такой трагической ясностью, как сегодня.
Данное обстоятельство должно найти свое отражение в представлениях о
новом идеале научности, его ведущих ценностях.
5. В ПОИСКАХ АЛЬТЕРНАТИВ

Рассмотренные нами основные тенденции критики классического идеала научности — антифундаментализация, плурализация, экстенсионализация — не только и даже не столько продукт имманентного развития «чистого» методологического мышления. В качестве важнейшего фактора их развертывания выступает сама современная историческая ситуация. Эти тенденции имеют не только критический, разрушительный характер по отношению к классическому идеалу научного знания, но и содержат в себе определенный «зародыш» нового идеала научности, отвечающего потребностям рассмотрения реальности в аспекте универсальных человеческих ценностей.

В соответствии с этими тенденциями стандарты научности лишаются своей обособленной самоценности и во все большей степени рассматриваются как средство решения проблем, стоящих перед человечеством.

— Способность решать проблемы, оттесняя фундаменталистскую обоснованность, выдвигается в качестве ведущей ценности нового, формирующегося идеала научности.

— Происходит решительный отказ от методологического редукционизма, а его место прочно занимает представление о необходимости разных стандартов и идеалов научности, что, естественно, в гораздо большей степени отвечает «универсальному» познавательному интересу.

— Методологическое мышление становится гораздо менее ригористичным и гораздо более терпимым, что отвечает и общим тенденциям развития научного познания.

Происходящие в современности изменения в методологическом мышлении касаются не только трактовки соотношения указанных вариантов классического идеала научности и определенных сдвигов в понимании сравнительной значимости универсальных характеристик научности.

В русле развития общей экстенсионалистской тенденции сегодня осуществляются попытки позитивной формулировки нового идеала научности, претендующего быть выражением «науки в собственном смысле». К
числу наиболее мощных из них можно отнести концепцию «финализации науки», выдвинутую Штарнбергской группой методологов.

В рамках этой концепции в качестве эталонного выдвинут особый тип научного познания, в котором интегрированы как внутренние, объективные закономерности развития науки, так и социальные цели и потребности.

Выделение такого слоя теоретико-научных исследований разрушает традиционный взгляд, резко разделяющий науки на фундаментальные и прикладные. Согласно традиционным представлениям,

— фундаментальные науки развиваются полностью автономно в соответствии с внутренней логикой предмета;

— прикладные науки, напротив, определяются внешними, практическими потребностями и задачами и представляют собой простое применение полученных в фундаментальных исследованиях результатов.

Такое развитие науки, конечно, имеет место, но не оно является главным предметом интереса методологов Штарнбергской группы.

Они обращаются к случаям, когда существующих научных знаний оказывается совершенно недостаточно для достижения социально детерминированных целей в тех предметных областях, которые входят в сферу компетенции уже имеющейся в наличии фундаментальной теории. Финализация есть «особого рода теоретическое развитие определенных внешним образом проблемных областей на базе существующих общих теорий (физика плазмы, металлургия в рамках физики твердого тела, сельскохозяйственная химия)»: это есть «процесс, в котором внешние по отношению к науке цели становятся ведущими в развитии теории».

(325)

Речь идет о таком типе развития науки, который,

— с одной стороны, представляет собой род фундаментальных исследований,

— а с другой стороны, детерминирован внешними целями применения.

Главным условием финализации является определенный уровень развития, зрелости той или иной научной дисциплины. В развитии естественнонаучных дисциплин штарнбергцы выделяют три стадии: исследовательскую или допарадигматическую, парадигматическую, постпарадигматическую.
— Исследовательская стадия охватывает развитие дисциплины до выдвижения теории о какой-либо специальной исследовательской области. Здесь преобладает эмпирическая стратегия: эксперименты, описания, классификации.

Эти исследования могут осуществляться в соответствии с внешними, социальными целями.

Однако это еще не финализация, а функционализация. Наука реагирует здесь на внешние цели еще не специфическим теоретическим способом.

Примером такого развития может служить исследование патогенеза человеческого организма в медицине хронических заболеваний. Здесь нет парадигматической теории. Биология этой исследовательской области находится в исследовательской фазе. Целью клинических исследований хронических заболеваний является оптимизация терапевтического лечения. Исследование состоит, например, в систематических вариациях «дозы», «длительности», «комбинаций» при лечении медикаментами.

— Парадигматическая стадия состоит в разработке и подтверждении основополагающей для какой-либо предметной области научной теории. Это развитие не допускает ориентации на внешние цели.

Примером может служить разработка «центральной догмы» молекулярной генетики с 1953 г. Результатом такого развития является достаточно развитая, «зрелая» теория, которая доминирует в данной исследовательской области.

— Наконец, постпарадигматическая фаза или фаза финализации состоит в специализации теории для решения определенных социально значимых проблем.

Однако эта специализация не есть простое логико-математическое выведение результатов из уже имеющихся в наличии теорий; это есть скорее развитие специальных теорий и, следовательно, продолжение фундаментальных исследований какой-либо исследовательской области. В то же время этот процесс в существенной мере детерминирован не внутренними, а внешними целями применения. Внешние цели действуют регулятивно уже в процессе специализации теорий. Они определяют исследовательскую проблему и требуют такого развития общей теории, для которой нет внутриначальной необходимости.
В качестве примеров такого рода развития штарнбергцы приводят создание агрохимии Ю. Либихом на основе «методологической зрелости» органической химии, разработку для решения практических проблем теории пограничного слоя в гидродинамике.

Важно отметить то, что появление такого рода идей весьма симптоматично для развития современных представлений об идеале научного знания. Ведь главные методологические особенности выделенного штарнбергцами научно-теоретического развития как раз и укладываются в общее русло рассмотренных изменений в методологическом сознании. Более того, можно сказать, что этот слой исследований во многих аспектах конкретизирует, «материализует» достаточно общие, абстрактные тенденции и линии этих изменений.

Новый идеал научности находится еще в стадии формирования и самоопределения. Но его основные тенденции угадываются достаточно отчетливо:

— замена фундаменталистской обоснованности «сверхкритерием» — способностью решать проблемы,

— допустимость множественности относительно частных идеалов научности,

— смягчение ригоризма в отношении зависимости науки от социокультурных ценностей и даже специальная социально-

практическая ориентированность определенного слоя фундаментальных научных исследований.

Об относительном завершении этапа формирования нового идеала научности можно будет говорить лишь тогда, когда методологические идеи и тенденции обретут свое устойчивое «материальное» воплощение в каком-либо реальном образце научного знания.

В настоящее же время мы можем зафиксировать лишь отдельные попытки «материализации» новых методологических идей и представлений, не находящих, однако, достаточно широкого признания в качестве эталона научности, сопоставимого с классическими эталонами. Это относится и к выделению штарнбергцами в качестве эталонного, особого слоя социально-практически ориентированных фундаментальных научных исследований.

Вместе с тем, также и в отношении «материализации» новых представлений о научности с достаточной определенностью могут быть указаны некоторые ведущие тенденции. Дело в том, что в реальном научном по-

(327)
знании могут быть зафиксированы определенные изменения, которые во многих аспектах соответствуют изменениям, происходящим в современном методологическом сознании.

Суть структурных сдвигов, происходящих в современной науке, может быть определена как переход от стратегии преимущественно дисциплинарного, предметно-фундаменталистского развития научного познания, к проблемно-ориентированным формам научно-исследовательской деятельности.

— Изменяется и характер решаемых современной наукой проблем: во все большей степени это оказываются комплексные проблемы, имеющие фундаментальную социально-практическую и социально-культурную значимость.

— Соответственно увеличиваются объемы, удельный вес и спектр комплексных междисциплинарных научных исследований.

— Наряду с техническими науками классического типа, опирающимися, как правило, на одну базовую научную теорию, все более широкое рас пространение получают комплексные научно-технические дисциплины и исследовательские комплексы.

(328)

Пожалуй, наиболее адекватное «материальное» воплощение, новые методологические идеи и представления находят в таком новом исследовательском комплексе знаний, как экология.

Разумеется, экологический исследовательский комплекс еще чрезвычайно далек от совершенства, которое обычно связано с представлением об эталоне научного знания.

Однако методологическое своеобразие этого комплекса выявляется уже достаточно отчетливо.

Развитие и соотношение когнитивных структур в социальной экологии в существенной мере определяется социальными потребностями и интересами. Притязания на истинность в ней сочетаются с нормативной ориентированностью.

Предметом социальной экологии является «обмен веществ», взаимодействие человека, общества и природы, которые образуют определенную систему.

А ее главная задача состоит в определении оптимальных условий равновесности и воспроизводимости этой системы.
Совершенно ясно, что определение условий и масштабов для воспроизведения данной системы невозможно без учета норм человеческого существования, форм и целей человеческого освоения природы. С другой стороны, сама экология, подобно медицине, предписывает обществу определенные масштабы, нормы, дозволенные особенностями природной среды.

Вопрос о новом, наиболее адекватном эталоне научности еще открыт.

Однако в соответствии с имеющейся достаточно стойкой тенденцией в их число включают прежде всего такие области знаний, в которых наиболее ощутимо воздействие социокультурных факторов. Поиск такого рода эталонов идет в общем русле гуманитаризации науки.

Завершая рассмотрение различных форм и идеалов научности, следует еще раз обратить внимание на их существенное многообразие. Панорама научности, представленная в более глубоком ракурсе философского зеркала, оказывается гораздо более сложной и разнообразной, нежели чем при ее достаточно поверхностном отражении в рамках дилеммы сциентизм-антисциентизм. Поэтому и оценки различных форм и идеалов научности не могут быть столь же жесткими и однозначными, как это имеет место в рамках данной дилеммы.

Более того, следует обратить внимание на тот факт, что относительная нормативно-ценностная «победа» одного из основных идеалов научности в социально-историческом плане объективно не влекла за собой «отмены» либо разрушения методологических ценностей, объединяемых прежним идеалом. Хотя отдельные субъективные попытки такого рода неоднократно предпринимались, процесс целостного перехода к новому идеалу завершался, как правило, лишь снижением статуса прежнего идеала, переводом его в разряд «вспомогательных», «инструментальных».

Каждый из рассмотренных основных идеалов имеет не только «преходящие» социально-исторические основания, но, как неоднократно подчеркивалось, гораздо более прочную «укорененность» в самой структуре человеческой деятельности.

Данные соображения заставляют еще глубже осознать качественную определенность и несводимость зафиксированных форм и идеалов научности. Поэтому формирование новых идеалов не может и не должно приво-
дить к их односторонней монополии, затрудняющей возможности научно-
го познания реальности в иных перспективах и срезах. Единство научного
знания достигается не поглощением одного его вида за счет другого, но на
пути полного развития всех его типов и соответствующих идеалов научно-
сти.

(330)
1. ЗАЧЕМ НУЖНА ИСТОРИЯ НАУКИ?

Никто из жителей современного цивилизованного мира не сомневается, вероятно, в том, что наука является неотъемлемой и важной компонентой нашей культуры.

Достаточно вспомнить, что самые значительные технические новации последних столетий, меняющие реальные условия жизни целых поколений в гораздо большей степени, чем любые политические переустройства, — будь то железная дорога, электрическая лампочка, телеграф, химические удобрения или компьютер — основаны на познании законов природы, т.е. на достижениях математики, физики, химии и биологии...

Однако о жизни и взглядах политических деятелей различных эпох мы знаем в целом гораздо больше, чем о жизни тех, чьи труды заложили основу всех благ, комфорта да и хлеба насущного современного мира.

Выдающийся голландский математик и историк математики Б. Ван дер Варден, обращаясь к читателям своей книги, не без горечи восклицает: «Кто отдает себе отчет в том, что с исторической точки зрения Ньютон является самой значительной фигурой XVII века».

И хотя эта оценка никем, кажется, не может быть подвергнута сомнению, разбор архива величайшего ученого всех времен и народов, издание его рукописей и подлинное исследование его творчества начались только в середине нашего века.

Действительно, история науки и техники — одна из самых молодых отраслей исторического познания, область, целенаправленная разработка которой началась отнюдь не в отдаленные времена, а только в XIX веке.

И хотя эта оценка никем, кажется, не может быть подвергнута сомнению, разбор архива величайшего ученого всех времен и народов, издание его рукописей и подлинное исследование его творчества начались только в середине нашего века.

Действительно, история науки и техники — одна из самых молодых отраслей исторического познания, область, целенаправленная разработка которой началась отнюдь не в отдаленные времена, а только в XIX веке.

И хотя эта оценка никем, кажется, не может быть подвергнута сомнению, разбор архива величайшего ученого всех времен и народов, издание его рукописей и подлинное исследование его творчества начались только в середине нашего века.

И хотя эта оценка никем, кажется, не может быть подвергнута сомнению, разбор архива величайшего ученого всех времен и народов, издание его рукописей и подлинное исследование его творчества начались только в середине нашего века.

И дело, конечно, не только в том, что мы призваны отдать должное дерзновенным усилиям наших великих предшественников разобраться в устройстве окружающего мира.

Первостепенная задача истории науки и техники как особой дисциплины отнюдь не просто мемориальная и общепросветительская.

Наряду с познанием мира, нам необходимо и познание законов нашего познания. Ибо наука в XX веке — мощнейший фактор общественного развития. С прогрессом науки и основанной на ней техники связаны как...
самые существенные надежды, так и самые серьезные тревоги человечества за свое будущее. Процесс научно-технического развития должен находиться под контролем общества, им надо управлять.

Именно поэтому весьма актуальной является задача построения теории развития науки — теории, объясняющей и раскрывающей механизмы успешного функционирования науки и эффективного ее развития.

Историческому исследованию науки и техники принадлежит в этой связи особое место: именно оно может и должно послужить отправной точкой, стать эмпирическим базисом для обобщений любого типа — как для создания общей теории науки, так и для практических рекомендаций в области научного менеджмента, ее организации в качестве особого социального института.

Все это в конечном счете позволит лучше понимать наше прошлое и настоящее, хотя бы отчасти заглядывать в будущее, т.е. прогнозировать и проектировать пути общественного развития. В этом и состоит высший «запрос» к постановке задач исто-рико-научных и историко-технических исследований, в этом их особая общекультурная, гуманистическая значимость.

2. ИСТОРИЯ НАУКИ ТОЖЕ ИМЕЕТ СВОЮ ИСТОРИЮ

Основная проблематика историко-научных исследований была осмыслена только в XIX в., но история науки понималась тогда либо как раздел философии, общей истории культуры, либо как особый раздел той или иной научной дисциплины. Специфика ее предмета и задач, особенностей ее исследовательских про-

(334)

грамм, место в семействе других дисциплин были предметом дискуссий еще долгие годы.

Трехтомная «История индуктивных наук» В.Уэвелла была неким введением, по замыслу автора, к будущей «Философии индуктивных наук».

Уэвелл писал: «Исследование путей, которыми наши предки приобрели наше умственное достояние, может показать нам и то, чем мы владеем и чего можем ожидать, — может не только привести нам на память тот запас, который мы имеем, но и научить нас, как его увеличить и улучшить. Совершенно справедливо можно ожидать, что История Индуктивной Науки доставит нам философский обзор существующего запаса знания и даст нам указание о том, как всего плодотворнее могут быть направлены
наши будущие усилия для расширения и дополнения этого запаса. Выве-
сти такие уроки из прошедшей истории человеческого знания и было пер-
воначальной целью настоящего труда».

Известный историк Г.Т.Бокль включил в свою «Историю цивилиза-
ции в Англии» обзор важнейших философских, физических и геологиче-
ских воззрений, справедливо полагая их важным фрагментом английской и
шотландской культур.

Аналогичные историко-научные сводки были сделаны для «Истории
XIX века» французских историков Э. Лависса и А.Рамбо.

Один из крупных ботаников XIX в., А. Деканьоль, рассматривал свои
трупы по истории науки в качестве раздела биологии.

И подобных примеров достаточно много.

Так, труды русских химиков В.В.Марковникова и А.Н.Бутлерова по
истории теории химического строения были естественным продолжением
поисков обоснования этой теории в интерпретации А.Н. Бутлерова.

Профессионализация истории науки сложилась к концу XIX века.

Признание ее в качестве самостоятельной научной дисциплины про-
изошло только в 1892 г., когда во Франции была создана первая специаль-
ная кафедра по истории науки.

— Сегодня в мире насчитывается около 100 подобных кафедр, не-
сколько десятков научно-исследовательских институтов и центров, ассо-
циаций и обществ.

— Продолжает расти число ученых в этой области, увеличивается
количество специальных периодических изданий, число монографий, жур-
налов, отдельных публикаций

— Сложилось устойчивое сообщество историков науки и техники,
благодаря чему ширится фронт историко-научных исследований, возника-
ют новые исследовательские программы, решаются все новые интересные
задачи.

Кратко охарактеризуем наиболее общие подходы и программы исто-
рико-научных исследований, не выделяя специфики предметных областей,
— т.е. не говоря об особенностях истории математики в отличие от исто-
рии химии или биологии, а истории физики — от истории географии или
лингвистики и т.п.

— Одной из первых решалась задача хронологической систематиза-
ции успехов той или иной отрасли (области) науки.
Историк науки должен был добросовестно «каталогизировать» результаты научных достижений той или иной дисциплины, воздать должное крупнейшим исследователям, отметив, если возможно, ошибки и заблуждения, то, что не прошло «проверку временем». Особенно привлекательным был поиск «забытого, но ценного» для данной дисциплины и на сегодняшний день. В настоящее время созданы многотомные обзоры достижений практически всех областей знания, хотя, надо заметить, успехи естественных наук в процессе их исторического развития описаны в целом лучше, чем успехи гуманитарных и общественных дисциплин.

— Другая программа историко-научных исследований акцентировала основное внимание на описании механизма прогрессивного развития научных идей и проблем.

Ярко характеризует эту программу известное выражение А.Эйнштейна: «История науки — не драма людей, а драма идей». Искусство историка науки состояло в том, чтобы реконструировать основные интеллектуальные традиции, темы и проблемы, характерные для той или иной дисциплины, и продемонстрировать непрестанное обновление конкретных научных идей, происходящее в ходе полемики с альтернативными подходами и идеями.

— Однако в дальнейшем усилилось внимание к «человеческому элементу» научной деятельности.

Задачами рассмотрения историка науки стали воссоздание социокультурного и мировоззренческого контекстов творчества ученых, анализ традиций научного сообществ разных эпох и регионов, реконструкция «внешнего окружения», которое способствует или тормозит развитие научных идей, теорий, подходов. Историко-научные исследования осваивали методики психологического и социологического анализа.

Очевидно, что эти доминирующие подходы, хотя и могут быть условно выделены как последовательно сменяющие друг друга, но в целом представляют собой, скорее, различные исследовательские программы в области истории науки, не отменяющие, а дополняющие друг друга.

Подлинного расцвета профессиональная история науки достигла в середине нашего столетия. Во многом это новое дыхание, новые горизонты были открыты трудами выдающегося французского историка науки Александра Койре (1892—1963 гг.). После его классических работ «Этюды о Галилее», «От мира замкнутого к бесконечному Универсуму», «Революция в астрономии», «Гипотеза и эксперимент у Ньютона» можно смело го-
ворить о том, что история науки как дисциплина достигла подлинной зрелости.

«Исследование истории научной мысли, как я это понимаю и пытаюсь осуществить на практике, — писал Койре, — направлено на то, чтобы уяснить движение этой мысли в состоянии ее творческой активности. Для этого важно поместить изучаемые источники в соответствующую интеллектуальную и духовную среду, интерпретировать их в зависимости от менталитета, предпочтений и антипатий их авторов. Необходимо сопротивляться искушению, которому слишком часто подвержены историки науки, делать более доходчивой часто темную, неловкую и мутную мысль прошлого, переводя ее на современный язык, который ее пряснет, но в то же время и деформирует».

Койре удалось осветить тонкие и глубокие трансформации самих способов научного мышления, его фундаментальных категориальных основ, которые характеризуют исторический переход от Античности к Средним векам и далее — к Новому времени. Интересна его попытка сформулировать те причины, благодаря которым исследовательская позиция историка науки была осмыслена именно в науке XX века.

Он писал: «Мы, пережившие два или три глубоких кризиса нашего способа мыслить («кризис оснований» и «утрату абсолютов» в математике, релятивистскую и квантово-механическую революции), разрушающие старые идеи и сумевшие адаптироваться к новым, мы более способны по сравнению с нашими предшественниками понять кризисы и полемику прошлого. Я считаю, что наша эпоха особенно благоприятствует исследованиям, а равно и обучению такому предмету, который может быть назван историей научной мысли. Мы больше не живем в мире ньютоновских или даже максвелловских идей, и потому способны рассматривать их одновременно извне и изнутри, анализировать их структуры, постигать причины их недостатков и слабостей. Мы теперь лучше вооружены, чтобы понять смысл средневековых спекуляций о строении континуума и «пространства форм», а также эволюцию структуры физико-математической мысли в течение последнего столетия, направленной на создание новых форм рассуждения и на критическое осмысление интуитивных, логических и аксиоматических основ их правомерности».
3. «КАК ЭТО БЫЛО?»

«Как это было?» — основной вопрос всякого исторического исследования.

Но в области историко-научных и историко-технических исследований ответ на этот вопрос особенно сложен. Какие именно события и факты должен реконструировать и подвергнуть анализу историк науки?

— Можно составить хронологическую шкалу достижений различных научных дисциплин и показать неуклонный рост наших знаний начиная от древности и до наших дней.

— Можно попытаться реконструировать ходы мысли, особенности рассуждений и доказательств ученых прошлых времен, их полемику с идеями своих предшественников и современников.

— Можно попытаться ответить на вопрос, в каком социальном и культурном контексте происходили те или иные события в развитии познания, под влиянием каких внешних условий и обстоятельств формировались мировоззрение ученого, какова была его судьба в социокультурных реалиях его времени.

Одна из главных проблем, которой нет в гражданской истории, но она характерна для историка науки, — понять, каким образом внешние, социокультурные, политические и мировоззренческие обстоятельства сказываются на результатах научного творчества, как они могут быть выражены в абстракциях теорий, постулатах, методике проведения эксперимента? В этом плане понять мотивы поведения политического деятеля, императора, фараона или революционера гораздо проще, чем мотивы научного творчества.

Естественно, что изучение истории естественных, технических и социальных наук предполагает знакомство с современной научной картиной мира, основными теоретическими воззрениями своего времени. Именно в системе современного знания живут в той или иной мере достижения прежних эпох, и современная наука аккумулировала все положительное содержание познания, прошедшее проверку в опыте и эксперименте, отбросив то, что в этой проверке не подтвердилось.

Объяснения природных и социальных феноменов сильно меняются со временем, и историк науки может показать изменения в этих объяснениях, которые в наибольшей степени демонстрируют прогресс научного мышления, происходящий с течением времени.
Однако каким же образом историк науки может выполнить эти и любые другие, стоящие перед ним задачи?

Его эмпирической базой являются прежде всего научные тексты прошлого — книги, журнальные статьи, отчеты о работе лабораторий, если они, конечно, сохранились, быть может, переписка ученых, рукописи и черновики, autobiографические очерки и воспоминания...

Трудность, однако, состоит в том, что тексты опубликованных работ, т.е. основной массив историко-научных источников, призваны рассказать не о том, как именно автор пришел к своему новому результату, а показать степень обоснованности этого результата и его согласованность с другими знаниями, уже признанными достоверными. Поэтому письменные источники сплошь и рядом направляют историка науки в его поисках ответа на вопрос «как это было?» по ложному пути. Да и сам автор текста, если бы историк науки имел счастье пообщаться с ним без посредников, не всегда может и хочет дать необходимые сведения.

О причинах этого выразительно сказал великий физик современности, один из создателей квантовой теории Поль Дирак в своей книге «Воспоминания о необычайной эпохе»:

«Физик предпочитает забыть путь, который привел его к открытию. Он шел по извилистой дороге, сворачивая иногда на ложные тропы, — об этом не хочется теперь даже вспоминать. Ему, может быть, даже стыдно, он разочарован в себе из-за того, что так долго возился. «Сколько времени я потерял, пойдя по такому пути, — говорит он сам себе. — Я же должен был сразу понять, что эта дорога никуда не ведет.» Когда открытие уже сделано, оно обычно кажется таким очевидным, что остается лишь удивляться, как никто не додумался до этого раньше. В таких условиях никому не захочется вспоминать о той работе, которая привела к открытию. Но это все просто противоречит желанию историка науки. Он хочет узнать о различных влияниях на работу, о промежуточных этапах, и его порой интересуют даже ложные тропинки. Это две несовместимые точки зрения. Большиную часть своей жизни я прожил как физик-исследователь, а это означает, что все промежуточные этапы я должен был забыть как можно скорее».

И вот историк науки в своем стремлении узнать «как на самом деле было?» оказывается перед необходимостью добросовестно анализировать ложные тропинки, ошибочные результаты и утратившие силы теории, все «зигзаги» на пути к научной Истине, которую ассимилирует и воплощает...
современная система знаний. Естественно, что необходимость такой удивительной работы была осознана далеко не сразу.

4. «ПРЕЗЕНТИЗМ» И «АНТИКВАРИЗМ» - МЕТОДОЛОГИЧЕСКАЯ ДИЛЕММА ИСТОРИКО-НАУЧНОГО ПОЗНАНИЯ

Исторические исследования, несомненно, обладают значительной спецификой. Своеобразен и объект изучения истории («прошлое») и эмпирический материал (массив «исторических источников»). Историк должен описать то, чего уже нет, с чем нельзя вступить в непосредственный контакт даже с целью изучения, и поэтому историческое описание всегда, по сути дела, — реконструкция. Историк вынужден опираться на свидетельства чужих глаз, не имея возможности увидеть то, что его интересует, собственными глазами.

По выражению французского историка Марка Блоха, «мы играем роль следователя, пытающегося восстановить картину преступления, при котором он сам не присутствовал, или физика, вынужденного из-за гриппа сидеть дома и узнающего о результатах своего опыта по сообщениям лабораторного служителя».

Историк лишен возможности подвергнуть свои воззрения на эпоху, которую он изучает, критическому эксперименту и, опираясь на полученные данные, безжалостно отбросить неверные представления. И тем не менее никакие особенности исторического познания не заставят усомниться в его глубинных притязаниях быть объективным и в самих возможностях реализовать эти притязания.

«Если под наукой подразумевать попытку выявить, что же на самом деле происходит, то история есть наука. Она требует той же самоотдачи, той же безжалостности, того же страстного стремления к точности, что и физика», — писал австралийский философ Джон Пассмор.

Историки разделяют общезначимые для всего научного сообщества установки и правила, к которым, в частности, относится и стремление к построению истиных высказываний об объекте изучения, и владение процедурами проверки этих высказываний.

Теперь попробуем «подглядеть» Некоторые правила, соблюдение которых дает историку (в том числе историку науки) возможность строить и накапливать подлинные знания о прошлом.
«Презентизм» и «антикваризм» — это специфические термины, в которых научное сообщество историков культуры зафиксировало две основные целевые установки, в рамках которых совершается любое историко-культурологическое исследование.

Презентизм — стремление рассказать о прошлом языком современности.

Антикваризм — желание восстановить картины прошлого во всей их внутренней целостности, безо всяких отсылок к современности.

Каким же образом эти установки определяют реальный ход исторической реконструкции и само прочтение исторических источников? Возможен ли рациональный выбор одного из этих методологических подходов к анализу прошлого?

Разберем для этой цели один хрестоматийный пример грандиозного географического открытия — посмотрим, как исходные установки определяют историко-научный анализ путешествия Колумба.

5. ОТКРЫЛ ЛИ КОЛУМБ АМЕРИКУ?

Кто же сегодня не знает, что «Колумб открыл Америку»?

Профессиональный историк науки, впрочем, высказывается гораздо более скромно: «Он первый пересек Атлантический океан в субтропической и тропической полосе северного полушария и первый из европейцев плавал в Американском Средиземном (Карибском) море», — пишет И.П.Магидович в «Очерках по истории географических открытий».

Попробуем разобраться в причинах этой мудрой осторожности.

С какой целью, когда и куда отправились в море корабли Х.Колумба?

Мы знаем, что Х.Колумб искал морской путь в Западную Индию и предлагал испанским монархам проложить торговые маршруты, которые позволили бы не сталкиваться военным и политическим интересам Испании и Португалии.

Таков общий, социокультурный контекст его дерзкого проекта, определившего цели Колумба-капитана.

Когда и куда плыли его корабли?

Известно, что Колумб успел совершить четыре путешествия:

— в 1492—1493 гг. он посетил (по нынешнему наименованию) Багамские острова, Кубу, Гаити;

— в 1493—1496 гг. — Малые Антильские острова и Ямайку;
— в 1498—1500 гг. — берега южноамериканского материка;
— в 1502—1504 гг. — берега Центральной Америки, южнее Кубы.

Какова же дата открытия Америки?

Если брать слово «Америка» в современном нам смысле, то это произошло в третьем и четвертом путешествиях.

Но для современников Х. Колумба и самых мореплавателей наиболее волнующим и важным был, конечно, день 12 октября 1492 г., когда матрос Родриго де Триана закричал, что вдали видна земля.

Но была ли достигнута искомая цель?

В основании маршрута Х. Колумба лежала карта известного флорентийского астронома и географа Паоло Тосканелли. На ней было изображено практически все, что люди знали о Земле в конце XV века. На карте поразительно много верных деталей — причудливый рисунок очертаний материковых берегов, нанесены многочисленные острова, но нет целого полушария!..

Нет никакого представления о существовании Тихого океана...

Невольное волнение охватывает нашего современника, когда он своими глазами может видеть, на каком, собственно, шатком основании поколебалось столь грандиозное предприятие.

На карте Тосканелли западный берег Испании и Африки расположен на сравнительно небольшом расстоянии от острова Чипангу (Япония) и материковых земель Китая (Китая) и Индии. Расстояние между Лиссабоном и Японией, по расчетам флорентийца, было менее 10 тысяч километров, что более чем в два раза преуменьшало реальное расстояние между ними.

X. Колумб внес свои поправки в эти рассуждения, и у него получилось, что от Канарских островов до Японии — не более 4,5—5 тысяч километров. Таким образом по его расчетам это расстояние оказывалось меньше реального уже более чем в четыре раза.

По выражению известного французского географа XVIII в. Жана Батиста Анвиля, это была «величайшая ошибка, которая привела к величайшему открытию».

Действительно, без этого грандиозного заблуждения корабли Колумба просто не могли бы двинуться в путь.
Удивительно и то, что при таких-то ошибках своего капитана матрос Родриго де Триана все-таки увидел на морском горизонте землю!..

И оглядываясь с высоты нашего времени на события XV века, можно сказать, что карта Тосканелли — это драматический символ человеческого познания вообще.

Его можно прочитать так:
люди смело прокладывают маршруты, ибо идут к землям обетованным, но попадают в неизвестность, что безжалостно рушит их представления о мире, которые, собственно, и привели их к великим Открытиям.

В ЧЕМ ЖЕ СОСТОЯЛО ОТКРЫТИЕ КОЛУМБА?
Сам он искал морской путь в Азию и, как ему казалось, нашел этот путь. Колумб был бы в отчаянии, если бы ясно и сразу обнаружилось, что открытые им земли не являются частью Азии.

Современники Колумба, впрочем, требовали точного ответа на вопрос, побывали ли его корабли в Индии. Сомнения в успехе его путешествия нарастали очень быстро, потому что экспедиции не могли привезти для доказательства достижения цели ни пряностей, ни других характерных для Индии товаров.

А в 1498—1499 гг. португалец Васко да Гама обогнул с юга Африку, открыл путь в подлинную Индию, завязал с ней торговлю и вернулся домой с грузом пряностей.

Когда все это стало известно, в глазах соотечественников Х. Колумб оказался болтуном и обманщиком. Португалия, таким образом, выходила вперед в морском соперничестве с Испанией, и это навлекло справедливый гнев испанских государей на великого мореплавателя.

В это время — время своей третьей экспедиции — Х. Колумб обследовал острова, лежащие к югу от Гаити, и подошел к берегу южноамериканского материка в том месте, где впадает в океан западный рукав Ориноко — «огромнейшая река», по выражению Х. Колумба. Как же он понял, какие земли и что за река простиралась перед ним? Он думал, что находится... у входа в рай. Подобно многим современникам, Х. Колумб думал, что за океаном лежит вход в рай, — на этом была построена «Божественная комедия» Данте, которую в XV веке воспринимали отнюдь не как сме-лый полет художественного воображения.
Человек, который, как нам теперь кажется, сыграл столь большую роль в окончательном утверждении представлений о шарообразности Земли, сам отнюдь не был уверен, что Земля — шар.

Можно теперь только удивляться, каким образом Х. Колумб решил на путешествие в Западную Индию, если в основании предполагаемого им маршрута не лежала уверенность в шарообразности Земли. Но это не более, чем наше удивление. Колумб же принадлежал иной эпохе, иной ментальности.

«Его идеи о форме Земли, — писал академик В. И. Вернадский, были очень странными. Не отличаясь, подобно другим великим мореплавателям того времени, достаточным астрономическим и математическим образованием и не будучи в состоянии ориентироваться в громоздком и неудобном аппарате того времени Колумб думал сделать из своих наблюдений вывод о том, что Земля не имеет форму шара, а форму груши, и на узком ее конце находится возвышение, которое Колумб считал местом входа в рай. Он развивал, следовательно, теорию, которую проповедовали многие церковные писатели того времени... — о литосфере, плавающей в гидросфере, с несовпадающими центрами, т. е. придерживался того воззрения, которое всецело разрушило его великим открытием».

В официальном письме-отчете, адресованном «католическим королям, Х. Колумб заявляет, что земное полушарие, куда он проник, «представляет собой [как бы] половину круглой груши, у черенка которой имеется возвышение, подобное соску женской груди, наложенному на поверхность мяча», что «места эти наиболее высокие в мире и наиболее близкие к небу» и что здесь лежит земной рай: «оттуда, вероятно, исходят воды, которые текут... в места, где я нахожусь».

Как же нам теперь оценивать и понимать его рассуждения? Как бред больного (известно, что Х. Колумб был в то время тяжело болен и даже полуослеп)? Как обман, необходимый для оправдания перед королями? Как религиозную мистику, столь свойственную его эпохе?

И среди всех этих фантастических и болезненных рассуждений мелькает совершенно трезвая фраза: «И если река эта не вытекает из земного рая, то я утверждаю, что она исходит из обширной земли, расположенной на юге и оставшейся до сих пор никому не известной...»

Нелегко, почти невозможно определенно ответить на этот вопрос. Во всяком случае карта, составленная Варфоломеем Колумбом, братом капитана и участником четвертого похода, названа картой «Западной Индии» и
вновь открытые континентальные берега Центральной и Южной Америки рассматриваются как часть Азии.

Надо еще добавить, что впервые название «Америка» появилось в 1507 г. в книге француза Марттина Вальдземюллера. К изданию были приложены два письма Америго Веспуччи в латинском переводе. По мнению автора, открытие нового материка — помимо известных уже Европы, Азии и Африки — принадлежало Веспуччи, который впервые этот материк подробно описал.

И. П. Магидович поясняет: «Нельзя предполагать, что Вальдземюллер хотел этим заявлением сколько-нибудь умалять славу Колумба. Для него, как и для других географов начала XVI в., Колумб и Веспуччи открывали новые земли в различных частях света. Колумб только шире исследовал Азию: открытые им земли казались его современникам окраинными островами и полуостровами Старого Света — частью тропической Восточной Азии...»

К 20-м годам XVI в. у всех карт «Америк» имелась общая черта: «Америкой» называется только южный материк, т.е. Новый Свет Веспуччи. Первым, кто распространил это название и на северные земли, был знаменитый фламандский картограф Гергард Меркатор.

На своей карте 1538 г. он пишет на изображении южного материка: «южная часть Америки», а на северной — «северная часть Америки».

Со второй половины XVI в. название «Америка» окончательно утвердилось за обоими западными материками.

И вот — какая горькая судьба!

Слава Америго Веспуччи распространяется все шире, в то время как о Х. Колумбе начинают забывать...

Задумаемся теперь о том, вправе ли историк науки настаивать на том, что именно Х. Колумб открыл Америку, преодолев тем самым «историческую несправедливость» человечества?

Суждение «Х. Колумб открыл Америку» — откровенно и предельно презентистское: оно верно относительно наших современных представлений о карте Земли.

Но антикварист должен настаивать на том, что Х. Колумб открыл «Западную Индию», хотя это суждение просто невозможно относительно современного уровня знаний. Однако оно совершенно адекватно описыва-
ет реальность исторического прошлого, что, собственно, и является конечной целью реконструкции.

Потому историк науки выражается с некоторой мудрой осторожностью: X. Колумб побывал там-то и там-то..., называя открытые им земли так-то и так-то.

Но как же так: неужели мы не в состоянии точно сформулировать то, что сделал X. Колумб?!

Ответ, вероятно, может быть только двусмысленным:

— если мы полагаем «Колумбом» некую перемещающуюся в географическом пространстве материальную точку, то мы вправе нанести на современную карту его маршрут и точно узнать, где он побывал.

— Но если нас интересует Колумб — его «деяние» как исторического реального лица, ставящего и формулирующего определенные цели, совершающего определенные поступки, осмысливающего полученные результаты, то мы будем склоняться к антикваристской реконструкции и тогда — в пределе — должны полностью отказаться от изображения маршрута XV века на современной карте.

Такова подлинная дилемма историко-научного познания: презентистского и антикваристского подходов. Проиллюстрируем ее и на других примерах.

6. «КИММЕРИЙСКИЕ ТЕНИ» В ИСТОРИИ ПОЗНАНИЯ

Историк науки, занимаясь изучением прошлого, готовится к встрече с иной культурой, иными образцами мысли и знания, которые уже не воспроизводятся современностью, однако он бывает поражен теми трудностями, которые возникают при реализации этого желания. Сколько часто он видит в прошлом лишь отражение собственной эпохи.

Как избежать этого?

Вот, например, алхимический рецепт XV столетия — рецепт получения философского камня Джорджа Рипли, приведенный в «Книге двенадцати врат»: «Чтобы приготовить эликсир мудрецов, или философский камень, возьми, сын мой, философской ртути и накаливай, пока она не превратится в зеленого льва. После этого прокаливай сильнее, и она превратится в красного льва. Дигерируй этого красного льва на песчаной бане с кислым виноградным спиртом, выпари жидкость, и ртуть превратится в

(347)
камедеобразное вещество, которое можно резать ножом. Положи его в обзаманную глиной реторту и не спеша дистиллируй. Собери отдельные жидкости разной породы, которые появятся при этом. Ты получишь безвкусную флегму, спирт и красные капли. Киммерийские тени покроют реторту своим темным покрывалом, и ты найдешь внутри нее истинного дракона, потому что он пожирает свой хвост...»

Как реконструировать содержание этого текста?

Еще в XIX веке видный французский химик Жан-Батист Андре Дюма «перевел» этот текст, придал ему вполне читаемый вид: обнаружилось, что речь идет о химических превращениях свинца, его окислов и солей. Расшифровка текста становится возможной, если перевести алхимические термины примерно так: «философская ртуть» — свинец; «зеленый лев» — массикот, т.е. желтая окись свинца; «красный лев» — красный сурик; «киселый виноградный спирт» — винный уксус, который растворяет окись свинца, и т.д. и т.п. «Киммерийские тени», в частности, — это черный налет на стенках реторты, который появляется вследствие разложения органических веществ при сильном нагревании (киммеряне, по верованиям греков, — народ из страны вечного мрака на краю Океана, у входа в подземное царство).

Еще более «точное» изображение древнего рецепта предполагает запись нескольких химических реакций:

\[3\text{Pb} + \frac{1}{2}\text{O}_2 = \text{Pb}_3\text{O}_4; \text{Pb(C}_2\text{H}_3\text{O}_2)_2 \rightarrow (\text{CH}_3)_2 + \text{PbCO}_3; \]

\[\text{PbCO}_3 = \text{PbO} + \text{CO}_2; \text{PbO} + \text{C} = \text{Pb} + \text{CO}. \]

Итак, мы можем убедиться, что алхимики, искатели философского камня, знали о химических превращениях свинца, его окислов и солей.

Но как быть с «черными драконами», «львами», «киммерийскими тенями»?

Дело не в том, что попросту жаль эти эмоционально окрашенные, прекрасные в своей динамичной пластике художественные образы, дело в том, что не выполнена и главная задача — нет подлинной реконструкции того, как мыслил и что именно знал алхимик, герой XV столетия.

Как же перевести текст, фиксирующий знание прошлого, так, чтобы его семантика была воспроизведена в ее исторической конкретности? Имеем ли мы как историки науки право на утверждение, что алхимики XIII-XV вв. знали, что «поваренная соль растворима в воде»? Некоторый реальный факт — подслаивание пищи, например, — имел место в те времена, но что можно сказать о знаниях той эпохи?
Мы должны иметь в виду, что «поваренная соль» — это в представлениях XV века вовсе не NaCl, до таблицы Менделеева еще очень далеко; группа «salis» [соли] — это, вероятно, минералы в наших представлениях; «вода» — вовсе не соединение H2O, таких представлений не могло быть, «вода» — это особое, согласно воззрениям эпохи, жидкое агрегатное состояние вещества; «растворить» вещество означало превратить его в воду.

В одной из своих работ Томас Кун показывает, что невозможно просто перевести термин «флогистированный воздух» как «кислород» (или, например, — атмосфера, насыщенная кислородом), а «дефлогистированный воздух» — как атмосферу, из которой кислород удален. Изолированно стоящее слово «флогистон», подчеркивает Т. Кун, не имеет уловимого для нас сегодня предметного отнесения к реальности, потому что за этим словом стоит вера автора в существование особой субстанции, вера, которую современный исследователь не только не разделяет, но и не может в себе воссоздать.

7. ТОЧКА ЗРЕНИЯ КОЛЛИНГВУДА

Один из известнейших английских историков философии Робин Джордж Коллингвуд (1889—1943) посвятил немало сил для того, чтобы показать, сколь непродуктивна презентистская позиция в понимании мышления прошлых эпох.

Объясняя свои взгляды, Р. Коллингвуд писал: «Вы никогда не сможете узнать смысл сказанного человеком с помощью простого изучения устных или письменных высказываний, им сделанных, даже если он писал или говорил, полностью владея языком и с совершенно честными намерениями. Чтобы найти этот смысл, мы должны также знать, каков был вопрос (вопрос, возникший в его собственном сознании и, по его предположению, в нашем), на который написанное или сказанное им должно послужить ответом».

Трудность историка состоит в том, что «вопрос» коренится в историческом прошлом, которое нам не дано, а «ответ» — перед нами, теперь и сейчас.

«Если кто-то писал в отдаленном прошлом, то обычно очень трудно решить эту проблему, — пишет Р. Коллингвуд, — ибо писатели, во всяком случае хорошие писатели, всегда пишут для своих современников, особенно для тех, кто «вероятно, будет в этом заинтересован». Последнее же
означает, что современники задают тот же самый вопрос, на который пытается ответить автор. Позднее, когда он станет «классиком», а его современники давно умрут, этот вопрос будет забыт, в особенности если ответ на него всеми был признан правильным, ибо в таком случае люди перестали задавать его и стали думать над следующим. Поэтому вопрос, заданный оригинальным писателем, можно реконструировать лишь исторически, что нередко требует большого искусства историка».

Коллингвуд утверждал, что формула Леопольда Ранке (выдающегося немецкого историка и методолога) — «историк должен восстановить, как на самом деле было», не объясняет самой главной трудности в работе историка науки. Когда речь идет об интеллектуальных действиях (идеях, теориях, проблемах), нужно еще понять, «что это было», каково содержание данного интеллектуального действия.

Действительно, иногда говорят, что историк науки прекрасно знает, что совершили Фалес, Аристотель, Галилей, Ньютон... Ведь их книги фиксировали полученные ими результаты. Дело заключается в том, чтобы восстановить, как они к этим результатам пришли. Однако историк науки, как мы стремились показать выше, вовсе не имеет однозначного ответа на вопрос, в чем, собственно, эти результаты состояли.

Чтобы понять содержание исторически конкретного действия, мысли или теории, нужно восстановить интеллектуальный контекст, т.е. реконструировать проблему, вопросы, для ответа на которые создавались данные теории.

«Если есть некая вечная проблема, то мы вправе спросить себя, — писал Р. Коллингвуд, — что Кант, Лейбниц или Беркли думали о Р. Если мы способны ответить на этот вопрос, то можно перейти к следующему: «Были ли Кант, Лейбниц или Беркли правы, решая проблему Р таким образом?» Но то, что считается вечной проблемой Р, на самом деле представляет собой серию преходящих проблем P1, P2, P3... — проблем, специфические особенности которых затуманились в глазах исторически близорукого человека, который стреб их в одну кучу под общим названием P. Отсюда следует, что мы не можем выудить проблему P из внеисторической коробки фокусника, поднять ее и спросить: «А что такой-то думал по такому-то поводу?» Мы должны начать так, как делают скромные труженики, историки, с другого конца. Мы обязаны исследовать документы и истолковать их. Мы долж-
ны сказать себе: «Вот перед нами отрывок из Лейбница. О чем он? Какой вопрос здесь решается?..»»

Р. Коллингвуд показывает, что, например, древнегреческое слово «полис» нельзя однозначно перевести на современный язык как «государство», а следовательно, нельзя и сказать, что размышления Платона в его труде «О государстве» и размышления английского философа Т. Гоббса о политике касались одного и того же предмета. Равным образом древнегреческое слово «дей» нельзя без серьезных оговорок перевести как «должен», и поэтому теория этики у греков и у Канта — это теории о разных вещах.

Приводя множество примеров подобного рода и предостерегая от простодушия, с которым зачастую переводятся термины и выражения прошлого на современный язык, без всякой попытки учесть историческую конкретность значения слов, Коллингвуд рисует всю парадоксальность ситуации на остроумном примере:

«Все это напоминает кошмарную историю с человеком, которому пришло в голову, что слово «триера» — греческий эквивалент слова «пароход». А когда ему указали, что описанные греческими авторами триеры не очень похожи на пароходы, он торжественно воскликнул: «А я что говорил! Эти греческие философы (или же «эти современные философы», в зависимости от того, чью сторону он приняв в добром старом споре между древним и новым временем) были ужасными путаниками, и их теория пароходов никуда не годится!» Если бы вы попытались объяснить ему, что "триера" вообще означает не пароход, а что-то совсем иное, он бы ответил: "Тогда что же оно значит?" И за десять минут показал вам, что вы этого не знаете. В самом деле, вы не можете изобразить триеру, изготовить ее модель или даже объяснить, как она действует. И уничтожив вас, он бы потом всю жизнь переводил "триера" как "пароход".».

Р. Коллингвуд считал борьбу с презентистской установкой в исторических исследованиях настолько важной, что посвятил ей весьма объемную книгу, свою собственную интеллектуальную автобиографию.

Действительно, надо со всей определенностью подчеркнуть, что обращенность историка на современность может действовать роковым образом не только на истолкование содержания отдельного текста, но и на понимание всей суммы условий действий героя прошлого.
Необходимо специально исследовать вопрос о той конкретной мотивации, которая характеризует и ведет интересующего нас деятеля, надо понять, в частности, что тайны Вселенной нередко открывались людям, ищущим в природе воплощение Божественного Замысла (что трудно бывает понять современному атеисту), что научные революции порой совершались людьми, отнюдь не бунтариами по природе, что люди прошлого действовали в рамках таких представлений о мире, которые нигде специально не назывались и не описывались, а представляли менталитет соответствующей эпохи.

Все это многократно увеличивает сложности историко-научной реконструкции.

8. ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ В ИСТОРИКО-НАУЧНОМ ИССЛЕДОВАНИИ

Сложность познавательной ситуации гуманитарного познания, включая и историю науки, связана с тем, что исследователь выступает как своеобразный прибор, не столько «проявляя» интересующие его содержательные характеристики текста, сколько впервые порождая их своим пониманием. Ведь суть проблемы состоит в том, что ни отдельно взятое слово устной или письменной речи, ни отдельное предложение, ни даже относительно замкнутый текст не обладают значением и смыслом как своими атрибутивными характеристиками.

«Выражение (слово) имеет значение лишь в потоке жизни», — объяснял в своих работах великий философ XX века Людвиг Витгенштейн. Значение и смысл текста порождаются его употреблением, т.е. контекстом его чтения и восприятия.

Проблема перевода — общая, сквозная проблема гуманитарных наук.

Старейший американский философ современности, знаменитый логик У. Ван Орман Куайн в своей книге «Слово и объект» показывает, что строгий перевод туземного слова «gavagai» на европейский язык практически невозможен. Сказал ли туземец просто «Кролик!» или «Смотри-ка, кролик!» или «Бегущий кролик» или «Белое, быстро бегущее животное?..»

Слово, произносимое в контексте одного мировосприятия и имеющее значение именно в этом контексте, должно быть включено в контекст совершенно другого универсума языка и деятельности, и это неизбежно порождает проблему искажения, точнее, — проблему модернизации сказан-
ного, проблему, которую У. Куайн назвал проблемой референциальной неопределенности. Он выдвинул тезис о принципиальной «неопределенности» перевода, особенно в некоторых крайних ситуациях — когда, скажем, два народа не имели вообще никаких контактов вплоть до настоящего момента коммуникации (ситуация «радикального перевода»).

Историк науки легко узнает свои трудности в этих логических изысканиях. Действительно, историк науки как «внешний наблюдатель сталкивается с аналогичными проблемами.

— Историк не может вступить в прямой контакт с прошлым, и «поток жизни», в котором выступает значение и смысл сказанного и в котором непосредственно живет историк, глубоко отличен от «потока жизни», в котором творил и создавал свои работы ученый прошлого.

— Как носитель современной культуры историк науки сталкивается с необходимостью описать «деяния» Х. Колумба или Фалеса, М. В. Ломоносова или Г. Галилея, которые были осуществлены в рамках иного универсума культуры, в условиях, когда уже нет и не может быть никакой актуальной коммуникации.

Именно это порождает специфику познавательной ситуации историко-научной реконструкции, т.е. специфику проблемы понимания прошлого.

Все эти трудности заставляют гуманитариев в конечном счете вспомнить о методологическом опыте, накопленном физиками при изучении квантово-механических явлений. Речь идет прежде всего о принципе дополнительности. И действительно, великий физик Нильс Бор был первым, кто указал на необходимость использовать принцип дополнительности в области гуманитарных исследований.

«При изучении культур, отличных от нашей собственной, — писал он, — мы имеем дело с особой проблемой наблюдения, которая обнаруживает много признаков, общих с атомными или психологическими проблемами».

Историк науки — носитель современной культуры, ее языка, современных научных идей, концепций, представлений.

Если в квантовой физике соотношение неопределенностей, по В. Гейзенбергу, связано со взаимодействием макроприбора с микромиром элементарных частиц, то в историко-научном исследовании возникает ситуация «референциальной неопределенности» (по У. Куайн) в связи с тем, что исследователь, живущий и работающий в рамках нормативной систе-
мы S, должен описать акт деятельности, совершенный в нормативной системе P. Благодаря историку науки, происходит, если так можно выразиться, взаимодействие S и P, которое порождает трудности перевода и понимания прошлого, о чем говорилось выше.

Попытки сформулировать содержание действия, преодолевая презентистский подход, ничуть не уменьшают трудностей. Но осознание, что в данной ситуации действует принцип дополнительности, позволяет уточнить технологию историко-научного анализа.

— Во-первых, необходимо описать социальные эстафеты, традиции, в рамках которых действовал интересующий нас герой прошлого.
— Во-вторых, нужно зафиксировать содержание действия (акта мысли).

Таким образом, «антикваризм» должен отказаться от притязаний сформулировать содержание прошлой деятельности и ограничить свои задачи реконструкцией реально действующих в прошлом социальных эстафет и традиций. Содержание акта прошлой деятельности формулируется в свете современного языка, что является задачей «презентизма», однако это описание, по сути дела, ассимилирует прошлое, переводя его в ткань современной культуры.

Можно даже сказать, что презентизм понимает прошлое, а антикваризм объясняет его.

Историко-научная реконструкция предполагает и то, и другое.

Но не следует забывать, что согласно принципу дополнительности оба описания альтернативны, что означает, что в рамках одного описания прошлое обладает одним набором характеристик, а в рамках другого описания — другим набором. Историку науки приходится принять закономерность и непреодолимость этой альтернативы.
9. ФИЛОСОФИЯ НАУКИ И ИСТОРИЯ НАУКИ

Подведем некоторые итоги.

Одной из основных задач историко-научных исследований всегда считалась хронологическая систематизация и каталогизация накопленных научных знаний, теорий, идей, подходов, поиск «забытого», но полезного. Переизложение прежних теорий и представлений в свете современного знания — один из возможных путей осознания целей и задач историко-научных исследований, но далеко не единственный.

В XX веке во главу угла были поставлены задачи реконструкции прошлого знания, воссоздание различных исторических этапов развития научной мысли во всем их неповторимом своеобразии.

Сегодня история естествознания и техники осознана как дисциплина, принадлежащая вовсе не к семейству естественнонаучных и технических наук, а как дисциплина гуманитарного профиля, как раздел всеобщей истории и культурологии.

Есть и еще одна важная особенность — специфика предмета изучения. История науки и техники изучает познание во всех его ипостасях:
— знание различных типов и видов,
— науку как особый социальный институт,
— научное мышление (или творчество).

Предмет изучения истории науки и техники совпадает с тем, что традиционно принадлежало сфере гносеологии, логике и методологии науки, и что сегодня — во второй половине XX века — чаще всего называют философией науки.

Соотношение истории науки и философии науки в этом плане можно сравнить с взаимоотношением палеоботаники и ботаники. Палеоботаника специфицирована тем, что анализирует прошлые органические формы, однако она неразрывно связана с теми представлениями, классификациями, методами, которые характеризуют современную ботанику, и в известной мере должна вписываться именно в свод ботанических знаний.

Однако для того, чтобы достичь аналогичных взаимоотношений, нужна была мощная перестройка дисциплин с обеих сторон:
— и история науки изменила свой облик,
— и в сфере философского анализа науки и техники произошли существенные трансформации.
Сложилось так, что на подобную историю науки и философии науки, выступающую в Новое время прежде всего как логика, прежде всего как логика, очертили предметы своего исследования как совершенно независимые друг от друга. Логика как самостоятельная дисциплина имеет более чем двухтысячелетнюю историю: со времен Аристотеля она выступала как нормативная дисциплина, ставила своей целью выработку критериев истинности знания и процедур доказательств, которые приводят к установлению истины.

Бурное развитие эмпирической науки в Новое время, возникновение науки как социально организованного института, осознание ее как особого способа производства знания, поставили перед логикой новые цели. Логика развивалась теперь в связи с требованием содействовать "росту наук".

Ф. Бэкон ставит перед собой задачу разработать логику, которая была бы "учением о методе" ("Новый Органон"), т.е. была бы некоторой методологией и могла бы указать ученым кратчайшие пути к "новым исти нам".

В этом же идейный пафос «Рассуждения о методе» Р. Декарта, «Критики чистого разума» И. Канта и даже «Науки логики» Г. Гегеля.

По традиции, сложившейся в Новое время, логик сознательно стремился «дистиллировать» путь научного познания, отбросив все то, что не приводило к успеху, и претендую тем самым создать нормы и стандарты самого постижения истины.

Разработка "норм" истинности (критериев истинности) и "норм" движения к истине (методов, процедур) составляет ядро логических исследований. Цели логики в XX веке были осознаны в контексте решения проблемы обоснования научного знания. Именно в этом контексте логика выглядит, вообще говоря, "полезной".

Широко популярная в первой половине века неопозитивистская традиция рассматривает логику именно в этом ключе. Неопозитивисты сумели достаточно подробно проанализировать вопрос о структуре научного знания, проблему объяснения и предсказания в науке, вопрос о гипотетичности научного знания и т.п.

Иными словами, сложившиеся в науке приемы и способы исследования получали описание в логике как некоторые регулятивные процедуры, и, с другой стороны, с точки зрения этих нормативных процедур, подвергались анализу и оценке конкретные научные теории и результаты.

Как мы уже говорили, история науки достаточно молода как самостоятельная дисциплина. Требование исторической достоверности в опи-
сании прошлого науки приводило к задаче восстановления картины научного исследования со всеми его «отклонениями», «случайностями» и «зигзагами». Картины этих описаний, как считалось, полезны для развития кругозора будущих ученых и удовлетворения любознательности. Логика же по-прежнему выглядела как «эксперт», проверяющий научную теорию на «подлинность». Таково было испытанное, устойчивое самосознание науки.

Победа эйнштейновой физики в начале XX века поставила традиционную логику в тупик. Теория Ньютона, казалось бы, была подтверждена не одним поколением тружеников науки, авторитет и «подлинность» ее не мог оспорить ни один логический эксперт...

Результаты А.Эйнштейна снова перевернули все вверх ногами!

Следует подчеркнуть, что кризис в физике вовсе не означал какой-то стагнации научного творчества — напротив, ученые должны были «сменить парадигму», выражаясь языком Т. Куна, и могли успешно работать дальше.

Однако в сфере философии науки спокойствие было нарушено сильнейшим образом. Предстояло заново решать вопрос о том, что такое наука и в чем суть ее кризисов, насколько закономерна смена основополагающих теорий, каков же при этих обстоятельствах логический критерий истинности и научности знания.

Как же отвечать на поставленные вопросы?

Прежняя философия науки, логика и методология не могли определить смысл «падения» ньютоновой физики. Самосознание науки должно было радикально измениться, чтобы стали возможными ответы. Начало века ознаменовалось обстоятельными и яростными дискуссиями о новых задачах, новых установках философского, логико-методологического анализа научного знания.

И тут была переосознана роль истории науки и значение ее результатов для построения логико-методологических моделей и вообще для философии науки.

Разрыв между логико-методологическими представлениями о знании и историко-научными описаниями часто объясняли различием «нормативного» и «описательного» изображений.
— Логико-методологические модели научного знания и научного поиска претендовали на роль «normы» или «образца», согласно которым должно действовать в науке.

— История науки претендует на описание реально происходившего процесса научного исследования.

При этом выяснилось, что в «normе» не оказалась зафиксированной необходимость и возможность преобразования знания, в то время как реальная научная практика постоянно испытывает давление необходимости изменений и трансформации существующих теоретических представлений. Новый этап развития философии науки уже в середине нашего века характеризуется именно обращением к истории науки как к своему эмпирическому базису, а также попытками привести в соответствие логические нормы, методологические правила и практику научного поиска. Были предложены и обсуждались различные варианты «логики», которые могли бы такие нормы построить (чаще всего такие исследования назывались «логикой развития науки»).

Самый дух этих поисков хорошо выразил французский методолог и философ Гастон Башляр (1884—1962).

И я входил в храм науки, — писал он, — когда определения всех основных научных дисциплин начинались с частицы «не»: нелавуазьеровская химия, неевклидовая геометрия, неньютонова механика, неаристотелевая логика... Поэтому и философия науки, соответствующая духу науки XX века, должна быть радикально новой — своего рода «нонфилософией», «философией отрицания».

Задача состояла в том, чтобы создать рациональные средства для анализа таких ситуаций человеческого познания, когда возникает настолько новое знание, что оно отрицает известное прежде.

Но с другой стороны, если логика и методология (вообще — философия науки) были слишком «далеки» от практики научного творчества, то ведь историю науки можно было упрекнуть в непозволительной «близости» к своему предмету изучения. Сама по себе история науки и техники не выдвинула иных задач, кроме «описания», она была настолько «эмпирическим» исследованием, что даже и не пыталась построить собственные теоретические модели происходивших историко-научных событий и дать им объяснение. Осмысление событий прошлого происходило, как правило, в рамках современной научной картины мира. А это, в свою очередь, при-
водило к такому изображению «траектории» научного развития, которое в сущности было проекцией на прошлое связи знаний в рамках современной картины.

Смысл исторического процесса развития науки виделся либо в победе истины над заблуждением, либо в постепенном «накапливании» истины.

Так называемая «кумулятивистская» модель развития науки была альфой и омегой моделей истории науки.

Этот уровень развития историко-научных исследований демонстрировал только одно: «прошлое», будь это истина или заблуждение, есть только путь к настоящему.

Известный философ и историк науки Дж. Агassi обращает внимание на то, что привычные традиции историко-научных исследований должны быть радикально пересмотрены, потому что они не позволяют получать подлинные знания.

«В результате всех усилий что же мы узнаем о самом процессе историко-научного развития?» — иронизирует Дж. Агassi. Мы узнаем, что Т. Браге наблюдал, И. Кеплер обобщал, Г. Галилей наблюдал и обобщал на более высоком уровне... наконец, получилась теоретическая механика! Или так: мы узнаем, что теория Ньютона выросла из исследований И. Кеплера, И. Кеплер — из Н. Коперника и т.д. и т.п. в глубь веков.

Серьезная переориентация философии науки, ее стремление приблизить свои модели к реальности научной жизни привели к критическому переосмыслению уже имеющихся традиций историко-научных исследований. Нельзя сказать, что проблема дружного сосуществования и плодотворного объединения усилий двух дисциплин уже решена полностью. Однако попытки синтеза этих двух подходов не прекращаются и обещают быть весьма плодотворными.

Решающий поворот для обеих дисциплин произошел примерно в 50—60-е годы нашего столетия, в русле работ методологической школы, возглавляемой тогда Карлом Поппером (родился в 1903 г.) и базирующейся в Лондоне. Огромную роль сыграли работы американского философа Томаса Куна, который привлек внимание к тому, что философия науки также должна отказаться от «нормативного» видения научной деятельности, а постараться построить модели реального поведения исследователя. Естественно, что такая постановка вопроса непосредственно сближает философию науки и историю науки.
Ученик Поппера Имре Лакатос (1922—1974) выразил самый дух этого долгожданного союза в следующих словах:
«Философия науки без истории науки пуста; история науки без философии науки слепа».

При этом в споре конкурирующих моделей философии науки решающее слово останется за историей науки: именно история науки — пробный камень для любых концепций в области философии науки, подчеркнул он.
Дальнейшее развитие философии науки пошло именно в этом русле.

(361)

XVI. СОЦИАЛЬНЫЕ АСПЕКТЫ ИСТОРИИ НАУКИ

1. ДИСКУССИИ ИНТЕРНАЛИСТОВ И ЭКСТЕРНАЛИСТОВ

Если история науки понимается как история научных идей, то исследователь, приступая к ее изучению, наталкивается на двойственность этой истории в следующем смысле:
— с одной стороны, научные идеи существуют независимо от каждого человека в отдельности, от того периода времени, когда они появились на свет, хотя и обладают хронологической последовательностью, они вытекают одна из другой, обосновывая друг друга и образуя единую систему знания;
— с другой стороны, историк не может не учитывать того обстоятельства, что возникают научные идеи в голове ученого и что их появлению способствуют или, наоборот, препятствуют различные события и факторы, не-имеющие, на первый взгляд, никакого отношения к строгой логической структуре научного знания.
Они могут относиться к области социальных, общекультурных, политических отношений, могут выражать особенности индивидуальной биографии ученого и т.д.
История науки расщепляется на две истории:
объективизированная, независимая от субъекта, история идей;
и
персонализированная, связанная с деятельностью ученого по производству знания, погруженная в контекст социальных, политических, религиозных и прочих отношений.
Такая двойственность истории науки послужила основанием для формирования двух методологических направлений в историографии науки к середине XX в.:

история научных идей,
упрвляемая внутренне присущими ей закономерностями (интернализм),

и

история науки, детерминируемая внешними социальными факторами (экстернализм).

Между представителями обоих направлений велись активные споры, дискуссии на международных конференциях, симпозиумах, в журналах и другого рода публикациях. В ходе этих дискуссий сложился некий невидимый колледж, члены которого активно общались друг с другом.

Среди наиболее активных участников обсуждений, проводившихся в середине XX в., можно назвать таких историков как

— А.Койре, Р.Холл, Дж.Рэнделл мл., Дж.Агassi, более или менее последовательно разделявших позиции сторонников интерналистского направления;

— Р. Мертон, А.Кромби, Г.Герлак, Э.Цильзель, Дж.Нидам, С. Лили, придерживающихся социологической интерпретации истории науки.

При анализе высказываний историков в адрес друг друга обращает на себя внимание тот факт, что представители социологической интерпретации истории науки упрекают своих оппонентов в недостаточном внимании к социальным аспектам в развитии науки.

Историки — интерналисты, как считают их оппоненты, уклоняются от решения тех проблем, которые находятся в центре внимания при социологической интерпретации истории науки.

А. Кромби говорит о том, что историки интерналистского направления пренебрегают изучением мотивов и целей науки, изучением распространения и применения научных открытий и т. д.

Г. Герлак ставит в вину историкам-интерналистам, что они игнорируют связь генезиса науки и ее истории с ростом техники, в то время как очевидно, что наука очень многим обязана практическим ремеслам и искусствам. Аналогичным образом Дж.Нидам считает пороком исторических работ интерналистского толка нежелание их авторов признавать тот очевидно, что наука очень многим обязана практическим ремеслам и искусствам. Аналогичным образом Дж.Нидам считает пороком исторических работ интерналистского толка нежелание их авторов признавать тот оче-
видный факт, что ученые постоянно сталкиваются с практическими проблемами и не могут этого избежать.

В свою очередь, историки интерналистского направления упрекают экстерналистов в том, что они оставляют вне поля своего изучения основное содержание истории науки, а именно, развитие научных идей, которое происходит, по выражению А.Койре, имманентно и автономно.

По мнению Р.Холла, история науки есть, прежде всего, интеллектуальная история и ее никак нельзя объяснить внешними факторами. Р.Холл особенно энергично подчеркивает огромную разницу между двумя подходами в изучении истории науки и неоднократно высказывается об их фундаментальном отличии друг от друга.

Однако такие высказывания о противоположности, несовместимости двух направлений часто определялись искажением позиции противника.

Это особенно четко проявилось в споре Р.Холла и Р.Мертона на Висконсинском симпозиуме (1957 г.)

Когда Р.Холл в ходе дискуссии излагает свое собственное понимание роли ремесла и техники в возникновении науки Нового времени, т.е., когда он выступает в несвойственном ему амплуа историка, изучающего влияние внешних факторов на науку, тогда Р.Мертон полностью с ним соглашается. Когда же Р.Холл воюет против экстерналистов, предварительно изложив их точку зрения, Р.Мертон возражает против преувеличений и искажений и утверждает, что здесь не может быть никакого спора, так как невозможно найти сторонников взглядов, которые Р.Холл приписывает экстерналистам.

Получается, что вроде как и спорить не о чем, что дело только в разных предметах исследования, а это не дает еще повода говорить о противоположности и несовместимости двух подходов. Каждый занимается своим делом и не мешает другому.

2. ОБЩЕЕ ОСНОВАНИЕ В ПОЗИЦИЯХ МЕТОДОЛОГИЧЕСКИХ ОППОНЕНТОВ

Такое миролюбивое завершение противостояния интерналистов и экстерналистов оказывается возможным в силу определенного понимания и теми и другими социальности в истории науки.

Социальность толкуется ими исключительно как воздействие внешних социальных факторов (отсюда и название — экстернализм), таких как экономические, военные, политические, правовые и т.д., на развитие науч-
ного знания, которое обладает своими внутренними (отсюда — интернализм) законами, определяющими логическую связь между научными понятиями, всеми элементами эмпирического и теоретического содержания науки.

Представителями и того, и другого методологических направлений в историографии науки признается относительная независимость научного знания, обладающего своей внутренней логикой, от воздействия внешних социальных обстоятельств.

Эти обстоятельства могут ускорить или замедлить развитие научного знания, изменить его направление, но они практически не могут повлиять на внутреннюю логическую и содержательную сторону научных идей.

Это признается всеми:
— интерналисты, реконструируя логику развития научных идей, не ощущают никакой потребности в изучении внешних социальных факторов,
— экстерналисты, предлагая социологические исследования истории науки, не претендуют на анализ самого научного знания.

Среди историков науки существует как бы разделение труда.

Когда делаются попытки объединить исследования того и другого рода, то получаются, как правило, достаточно искусственные произведения, в которых наряду с перечислением следующих друг за другом научных открытий, в таком же хронологическом порядке излагаются события из гражданской истории. Органической внутренней связи между двумя рядами развития не получается. Научное знание в такого рода работах развивается по своим законам, общество — по своим.

В связи с этим можно вспомнить многотомные истории науки Р.Татона, А.Дома или Дж.Сартона.

Понимание социальности, которое присутствует в работах и интерналистов и экстерналистов как нечто само собой разумеющееся, не вызывающее сомнений, предполагает разделение труда в обществе и обмен результатами деятельности. Ученый-естествознавец, промышленник, военачальник, администратор — каждый занимается своим делом и находится в определенных социальных отношениях с представителями других сфер деятельности.

Общение осуществляется главным образом через обмен результатами деятельности.
Когда процесс открытия, изобретения ученым завершен, его задача в том, чтобы представить результаты своего творчества в пригодном для использования виде, использования в самом широком смысле слова — и другими учеными, и представителями других родов деятельности (экономики, политики, культуры и пр.). При этом складываются и соответствующие отношения между людьми. Ученый, получивший новый результат в науке, представляет интерес и ценность в обществе как носитель определенной информации, обладатель знания, которое он может передать другим.

История открытия, а значит, и ученый в своей истории, ученый как личность для успешного функционирования научных результатов в обществе значения не имеет.

Аналогичные требования предъявляются и к человеку, получающему информацию. От него не требуется никаких личных качеств, которые бы помогли ему эту информацию расшифровать, понять ее генезис. А если он такими качествами обладает, то они могут ему даже помешать успешно использовать полученные сведения.

Действительно, если бы ученый стал воспринимать каждую математическую формулу, которая ему нужна в работе, в «истории» этой формулы — в ее возникновении, изобретении, он едва ли смог бы сдвинуться с мертвой точки. Усвоение истории науки, ее прошлых результатов в форме получения готовой информации, не подлежащей проверке, является необходимым элементом всякой научной работы. Тем более такая форма овладения историей необходима и неизбежна в материальном производстве, в быту, в частности, в тех случаях, когда здесь используются результаты научной деятельности.

Для того, чтобы результативно и с толком пользоваться телевизором или холодильником, нам для получения того или иного эффекта вполне достаточно уметь поворачивать и нажимать соответствующие ручки и кнопки. Эти приборы и сделаны в расчете на то, что ими будут пользоваться профанны, не знакомые с их конструкцией и путями изготовления.

Для осуществления того типа общения, о котором сейчас идет речь, человек должен обладать достаточно простыми навыками, а личностные характеристики остаются за скобками, как несущественные и даже мешающие. Отсюда широкие возможности взаимозаменяемости, один и те же функции в обществе могут выполняться в идеале любым из людей, т.е., другими словами, субъект деятельности постоянен, неизменен. Он индифферентен к своей деятельности, и она никак на него не влияет.
Таким же образом и в истории науки научное знание безразлично к личности ученого, к социальным, культурным характеристикам той эпохи, когда это знание было произведено на свет.

Самое подробное и тщательное изучение историком социальных условий, которые сопутствовали появлению новых научных идей, не введет исследователя к содержанию и логике научного знания (экстерналлизм), а скрупулезный анализ внутренней логики научной теории не требует выхода в социальный контекст научной деятельности (интернализм).

(367)

Деятельность по производству научного знания во всех ее видах отделяется от получаемого результата. Эта трактовка социальности в истории науки кажется безупречной. Однако у нее имеются свои границы.

3. ЕСТЕСТВЕННО-НАУЧНОЕ ТЕОРЕТИЗИРОВАНИЕ И ПОНЯТИЕ СОЦИАЛЬНОСТИ

Этому типу социальности, который доминирует в Новое время (прежде всего в материальном производстве) и основывается на разделении труда и обмене результатами деятельности, соответствуют и некоторые особенности теоретизирования в классическом естествознании.

В новое время господствующей тенденцией в познавательном отношении человека к природе является взгляд на нее как на противостоящую и чуждую человеку.

Но когда познание внешнего мира, независимого от человека, подлежащего изучению, освоению, использованию, понимается только как процесс, направленный во вне, в своей потенции уводящий в бесконечность, не замыкающийся обратно на человека, тогда очень легко утрачивается всякая необходимость прибегать к социальным моментам для объяснения характера научного знания как такового.

Скальпель естественно-научного знания вскрывает все более глубокие пласты природного бытия, и при этом вполне можно отвлечься от того факта, что сам скальпель (техническая оснащенность науки, материальные ресурсы, экспериментальное оборудование, мыслительные, логические возможности ученого) меняется и совершенствуется. Важно то, что с его помощью добывается знание как таковое, внутреннее содержание и структура которого зависят от характера вскрываемых пластов, а не от особенностей самого скальпеля.
История человеческих отношений, история социума — это предпосылка и необходимое условие появления научного знания, но сколько ни изучай социум,

никогда не приблизишься к пониманию структуры и содержания знания, являющегося отражением, воспроизводением объективно и независимо от человека существующей природы.

— Вне человеческого общества научное знание немыслимо, оно по-рождается человеком, но в идеале оно тем больше приближается к абсолютной истинности, чем основательнее очищается, освобождается от всего человеческого как субъективного, неустойчивого, алогичного, случайного.

— Познающий субъект неизменен, всегда один и тот же, а феноменологический факт, что человечество развивается, трансформируется, следует учитывать только с целью понять, что же нужно исключить из процесса познания, чтобы можно было говорить о получении действительно объективного научного знания о реальном мире.

— Общение ученых между собой независимо от того, принадлежат ли они к разным эпохам или являются современниками, осуществляется как бы вне времени, в квазиодновременном пространстве.

— Наука в своем развитии постепенно освобождается от заблуждений и ошибок, связанных с субъективной стороной познания и бережно хранит крупицы объективной истины о мире, не подвергшиеся влиянию исторически преходящих событий и случайных с точки зрения развития научных идей обстоятельств.

Если исходить из такой точки зрения, социальные отношения между людьми в процессе получения знаний о природе утрачивают исторический характер.

Противоположная же точка зрения, когда признается обусловленность содержательной стороны научных идей социальными обстоятельствами, изменяющимися в ходе своего исторического развития, характеризуется как релятивистская, оправдывающая произвол и хаотичность в истории научных идей. В идеале субъект должен быть освобожден от всех своих исторических характеристик, доведен до точечного объема, до «ничего», не могущего «осквернить» логическую безупречность объективного научного знания.

В этом смысле социальное полностью исключается из развития научных идей.
С другой стороны, установка на понимание природы как на противостоящую человеку, чуждую ему силу, которую надо укротить, покорить, познать с целью максимального использования, приводит к тому, что и научное знание о природе воспринимается в обществе, прежде всего, с точки зрения возможностей его использования в утилитарных целях.

Естественно-научное знание функционирует в обществе как информация, как сигнал к действию, и такую роль оно может выполнять только в качестве готового результата, «черного ящика».

При использовании тех или иных научных результатов в материальном производстве, например, история этих результатов, пути их получения не имеют никакого значения. Можно даже сказать, что функционирование результатов научной деятельности в социуме тем успешнее, чем более строго формально, в соответствии с нормами логики, безотносительно к субъективным аспектам процесса познания, они сформулированы.

4. МЕХАНИЗМ ДЕЙСТВИЯ СОЦИАЛЬНОГО ЗАКАЗА

Описанный выше способ функционирования науки в обществе (через использование ее результатов) лежит в основе действия социального заказа, являющегося могучим средством стимулирования, регулирования научного прогресса.

Допустим, в результате политического, военного развития, или в производстве, сельском хозяйстве вырабатывается некоторая потребность, которую может удовлетворить наука. Например, развитие сельского хозяйства порождает потребность в новых удобрениях.

Наука получает социальный заказ.

При этом обществу безразлично, какими научными средствами этот заказ будет выполнен, важно получить результат научных исследований, который можно успешно использовать в хозяйстве. Ученным, в свою очередь, безразлично для успешного выполнения их работы, какими путями полученный ими заказ был сформирован в обществе. Важен результат некоторого общественного развития, который должен быть воспринят как толчок к деятельности.

Общественное воздействие на науку в этом случае характеризуется следующим образом.

— Как действие внешней силы, стимулирующей движение, но не отвечающей за законы этого движения (неурожай в сельском хозяйстве, вы-
нуждающий химиков интенсифицировать работу в определенной области своей науки, не детерминирует пути и способы рассуждения ученых).

— Внутренняя природа этой внешней силы неважна для понимания законов вызванного ею движения.

— Результат научной деятельности, переданный обществу для потребления, использования, тоже действует как сила, приложение которой вызывает определенное движение (например, применение удобрения ускоряет развитие растений), но законы этого движения не детерминируются приложением силой (растение может расти быстрее или медленнее, но оно растет по своим биологическим законам, которые не могут определяться новым химическим удобрением).

Такого типа социальные отношения соответствуют логике рассуждения в классическом естествознании.

В механике Ньютонга природа сил, вызывающих движение, неизвестна. Эти силы характеризуются только по вызываемому ими действию. Кинематические законы движения не зависят от того, какая сила вызвала данное движение. Движение материальных тел в теории сводится к движению материальных точек, это означает, что кинематические законы движения не учитывают внутреннюю структуру, содержание движущихся тел, те изменения, которые в них вызываются движением.

Способы рассуждения в историографии науки и экстерналистов, и интерналистов аналогичны:

результаты научной деятельности функционируют в обществе, а результаты любого рода общественной деятельности функционируют в науке как внешние силы.

Именно такая форма существования науки в обществе делает возможным социальный заказ.

(371)

5. ФИЛОСОФИЯ В ИСТОРИИ НАУЧНЫХ ИДЕЙ

В историко-научных концепциях середины XX в. научное знание в его логике и содержании отделяется демаркационной линией не только от других, по отношению к науке, социальных институтов (производство, политика, военное дело, религия и т.д.), но и от творческой деятельности ученого по производству нового знания, т.е. от всей совокупности обстоятельств, сопутствующих появлению новых идей в науке.

При этом большинство философов и историков науки придерживаются мнения, что творческие процессы не поддаются логической интер-
претации, а поэтому они исключаются из всех теоретических историко-
научных реконструкций. Они присутствуют в этих реконструкциях только
своими результатами, логически оформленными и включенными в суще-
ствующую структуру научного знания.

Однако такая позиция при изучении развития научного знания все
чаще и чаще приводит к серьезным трудностям.

— Приходится, например, признать, что существуют по меньшей ме-
ре две истории науки — история уже полученного, добытого, готового
научного знания и история изобретения этого знания в головах индивиду-
альных ученых.

— Приходится признать, что, вопреки феноменологической очевид-
ности взаимосвязи между ученым и теорией, все научное значение как та-
ковое оказывается замкнутым в особом мире идей, изолированном от всего
человеческого. Более того, теории в исторической последовательности их
возникновения жестко разделены между собой и их, как оказывается,
трудно соединить какими-либо логическими, рациональными средствами.

— Наконец, само изучение структуры готового знания, чем последо-
вательнее с точки зрения логики оно осуществляется, тем чаще наталкива-
ется на необходимость включения в предмет изучения личностной дея-
тельности ученого по созданию этого знания.

Кризис позитивизма, философского течения, которое определяло в
значительной степени характер теоретичности историко-научных исследо-
ваний вплоть до середины XX в., привел к пересмотру историками базовых
понятий своей дисциплины, в том числе и понятия научного знания в его связи с творческими процессы-
ми в голове ученого.

Одним из основных тезисов позитивизма при интерпретации научно-
го знания было отделение этого знания от философии.

Потому вытеснение позитивизма из историко-научных концепций
началось с критики именно этого положения, являвшегося краеугольным
камнем позитивистской методологии.

Среди историков науки первым начал массированное наступление на
позитивизм Э.Барт. Его основная работа «Метафизические основания со-
временной классической науки» была опубликована в 1925 г.

Э. Барт полагал, что научное знание в принципе не может быть отде-
лено от философского. По его мнению, интеллектуальная история показы-

(372)
вает совершенно ясно, что мыслитель, отвергающий метафизику, в действительности придерживается метафизических понятий трех видов.

— Во-первых, он разделяет идеи своего века относительно основ мироздания.

— Во-вторых, пользуясь в своей работе каким-то методом, исследователь едва ли сможет избежать искушения сделать из этого метода метафизику, т.е. предположить такое устройство мира, которое позволяет применять его метод с успехом.

— В-третьих, человеческая природа такова, что она нуждается в метафизике для своего полного интеллектуального удовлетворения, и ни один великий ум не может уклониться от игры с фундаментальными вопросами, тем более, что они настойчиво и все вновь и вновь возникают перед ним в ходе позитивных исследований или под влиянием вненаучных интересов, таких, например, как религия.

Но поскольку, пишет Э. Барт, позитивистски настроенный ум не привык к систематическому метафизическому размышлению, его спекуляции по такого рода вопросам оказываются часто жалкими, неадекватными и даже фантастическими.

Э. Барт полагал, что невозможно понять современную науку без осмысления ее метафизических оснований в сравнении с метафизическими основаниями средневековой науки.

А. Койре, который знал идеи Э. Барта, продолжил критику позитивизма и еще больше, чем Э. Барт, подчеркивал значение анализа научной революции XVII в. для понимания роли философии в истории научных идей.

Переход от аристotelевской науки к науке нового времени означал, прежде всего, по мнению Койре, смену философских представлений.

Великие мыслители XVII в. должны были не просто открыть законы природы, которые нам кажутся сегодня такими простыми и которые усваиваются без особого труда детьми в школе, они должны были разработать и построить саму систему, которая сделала эти открытия возможными. Они должны были изменить и переделать свой интеллект, снабдить его рядом новых понятий, разработать новый подход к бытию, новую концепцию природы, новую концепцию науки, другими словами, новую философию. Сформировался новый стиль мышления, в контексте которого и может существовать современная наука.

Таким образом, в историко-научной концепции А. Койре
— внимание фокусируется на фундаментальной научной революции, когда формируются новые идеи в конкуренции и борьбе с идеями аристотелевской науки;
— присутствуют не только и не столько результаты научной исследовательской деятельности, сколько процесс возникновения нового научного знания;
— научное знание не отделяется от деятельности по его получению, и в этом случае оно оказывается неотделимым от философии, оказывается погруженным в определенный тип мышления, свойственный конкретной исторической эпохе.

Эти свои идеи А.Койре наиболее полно развил в своем основном труде «Галилеевские этюды», опубликованном в 1939 г.

Как уже говорилось выше, А.Койре был главой школы интернационалистов, т.е. он занимался прежде всего историей научных идей, отвлекаясь от воздействия внешних социальных факторов как от несущественного для имманентной логики научного знания. Сам он, как и его оппоненты, не воспринимал свой выход в мир субъекта научной деятельности через философию, строй мышления и научную революцию как прорыв к социальным аспектам истории науки. Он, как и все историки в середине ХХ в., понимал социальность только как воздействие внешних социальных факторов, и поскольку это воздействие не было существенным для его исследовательских целей и он им не занимался, то он и считал себя противником социологических интерпретаций науки.

Линию А.Койре в историографии науки продолжил Т.Кун.

В своей книге «Структура научных революций» (1962), в предисловии, он специально оговаривает, что не будет заниматься внешними социальными факторами развития науки, и действительно он этого не делает. Между тем, его концепция уже большинством воспринимается именно как социологическая, и основной толчок она дала развитию разного рода социальных течений в историографии науки.

Т. Кун развивает дальше идею А.Койре о строе мышления, соединив это понятие с понятием парадигмы глобального, мировоззренческого характера. Кроме того, понятие парадигмы у Т. Куна предполагает наличие сообщества ученых, которые разделяют приверженность этой конкретной парадигме. Для Т. Куна анализ научного знания не может быть плодотворным, если он не включает в себя анализ деятельности научного сообще-
Субъект научной деятельности занимает прочное место в системе взглядов Т.Куна.

Таким образом, кризис позитивизма и пересмотр ряда его базовых положений, прежде всего, об отделении научного знания от философии, приводят к формированию представлений о новом типе социальности, базирующейся на производстве нового знания субъектом научной деятельности.

6. РАЗНООБРАЗИЕ ФОРМ СОЦИАЛЬНЫХ ОТНОШЕНИЙ В ИСТОРИИ НАУКИ

В работах экстерналистского толка тоже все чаще внимание сосредоточивается на социальных отношениях, складывающихся вокруг процессов генерирования нового знания.

Р. Мертон, глава школы экстерналистов, неоднократно подчеркивал важность для историка осознать, что никогда никакое знание не излагается в том же порядке, в каком оно было получено. В конечном продукте научной деятельности обычно скрывается тот путь, которым ученый шел к своему открытию. Задача историка изучить разного рода социальные, культурные, психологические обстоятельства, сопутствовавшие работе ученого над открытием.

Подлинная история научных идей — это социальный процесс, который не может быть понят без обращения к логике научного знания.

Историка науки должны интересовать в первую очередь такие события и аспекты прошлого науки, которые не включены непосредственно в современное состояние знания.

История науки должна содержать разумные для своего времени, но ошибочные с нашей современной точки зрения понятия, которые были опровергнуты впоследствии, а также неверные заходы, теперь уже архаичные доктрины, как бесплодные, так и плодотворные заблуждения прошлого.

Помимо классических трудов прошлого историк обязан включить в круг своего рассмотрения дополнительно в качестве исходного материала целый ряд других источников. Р.Мертон имеет в виду научные записные книжки и дневники, корреспонденцию, автобиографии и биографии.

Из таких источников историк может почерпнуть сведения о том, как ученый в действительности проводил свои исследования, об интеллекту-
альных и социальных влияниях, сопутствующих им, о случайных находках идей и данных, о заблуждениях, оплошностях, отклонениях от первоначального плана работы и о всяких других эпизодах, которые редко попадают в опубликованные материалы.

Однако историк никогда не должен претендовать на анализ научного знания самого по себе, это дело естествоиспытателя. Для Р.Мертон важно вычленить научное знание в особую область, четко отграниченную и от социальной структуры самой науки, и от других социальных институтов в обществе.

В этом у Р.Мертон много общего с К.Поппером, который тоже выделяет научное знание в особый мир идей, отделенный четкими демаркационными линиями от двух других миров — мира физической реальности и мира человеческих восприятий и ощущений.

Но если для К.Поппера подлинная история науки есть история научных идей в третьем мире, то для Р.Мертон подлинная история науки — это ее социальная история, история условий осуществления научной деятельности, мотивов исследовательской работы ученого и т.д.

Научное знание, считает Р.Мертон, развивается по своим собственным законам, независимо от социума.

Это развитие — кумулятивно, поступательно, непрерывно.

Все более или менее ценное из прошлого научной дисциплины входит в ее современную теоретическую мысль.

Ученый в своей повседневной работе не нуждается в знании тех идей и теорий, которыми он оперирует.

Современная теория как система — это область логики и может быть понята без всякого обращения к истории. Не случайно в качестве эпиграфа к первой главе своей книги «О теоретической социологии» Р.Мертон берет слова А.Уайтхеда: «Наука, которая не решается забыть своих основателей, обречена».

Движущую силу науки Мертон видит в стимулах индивидуальной деятельности ученого.

Главным стимулом он считает стремление ученого к утверждению своего приоритета, который обеспечивает ему профессиональное признание.
Здесь и заключается энергия, движущая систему, институализированная мотивация, которая может объяснять ориентацию ученых на научную этику и их готовность отвечать ее требованиям.

Соответствующим образом организовано научное сообщество, подчиняющееся своим, специфичным для науки этическим нормативам. Генезис науки Нового времени был возможен лишь при наличии функциональной связи между ее еще только зарождающимися этическими нормами с нормативами поведения какого-либо уже утвердившегося, пользующегося поддержкой общества социального института.

Таким институтом в Англии XVII в. оказался институт религии, но это в значительной степени историческая случайность. Р.Мертон сам приводит пример Италии, где современная наука сформировалась при поддержке других социальных институтов.

Само по себе наличие функциональной связи между наукой и каким-то другим, уже обладающим твердым общественным статусом социальным институтом необходимо, но исполнители ролей могут меняться. Факт благотворного влияния, например, религии на науку является некоторым побочным, неожиданным результатом развития религии, который не могут предвидеть и сами религиозные вожди.

Никаких единых закономерностей развития науки в обществе нет и быть не может.

Каждую историческую ситуацию следует рассматривать особо и выявлять свойственные ей функциональные отношения. В каждом социальном институте предполагается наличие некоторого внутреннего «жесткого ядра» (научное знание в науке, теология в религии), которое существует само по себе и не вступает ни в какие контакты с другими факторами социального порядка.

Движущая сила развития социального института выносится обычно за пределы «жесткого ядра» в сферу мотиваций деятельности, опирающихся на господствующие в обществе ценности. Через эти мотивационные аспекты и осуществляется связь между социальными институтами, в нашем случае — между наукой и религией. Понять научное знание как логическую систему, исходя из взаимодействия науки и общества, для Р.Мертона в принципе невозможно. В этом смысле он гораздо категоричнее, чем А.Койре, защищает невосприимчивость научного знания к любому социальному воздействию.
Таким образом, в исторической и социологической концепции науки Р.Мертона предполагается, что историк и социолог не могут и не должны заниматься научным знанием как некоторой логической системой, это дело естествоиспытателя.

История науки — это социальный процесс, отделенный жесткой д-маркационной линией от научных идей.

Все, что связано с субъектом научной деятельности, остается внешним (экстерналистским) по отношению к логике развития научного знания. Но хотя все социальные аспекты истории науки и объединены у Р.Мертона этим общим свойством быть внешними, они подразделяются внутри себя на несколько видов, которые можно различить в том, что было выше сказано.

— Можно говорить о социальных отношениях между разными общественными институтами, такими как наука, религия, производство, политика и т.д.

— Очень важным для понимания истории науки являются отношения внутри научного сообщества, базирующиеся прежде всего на определенных этических нормах поведения.

— Наконец, историку необходимо, проанализировать всю совокупность социальных, психологических, этических, экономических и пр. отношений, которые складываются у ученого в его движении к научному открытию.

Существенно, что вместе с усложнением социальной структуры науки в XX в., особенно во второй его половине, появляется все более четкая дифференциация форм социальных связей. Ответ на вопрос, что же такое социальность в науке и ее истории, перестает быть однозначным и не вызывающим сомнения.

Понятие социальности становится проблемным.

7. МИКРОСОЦИОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

Послемертоновская социология науки (70—80 гг.) в значительной степени вобрала в себя идеи Т. Куна, а это прежде всего означало отказ от жестких демаркационных линий между социумом и знанием.
Школа Р. Мертона:
историк и социолог науки не могут и не должны анализировать научные идеи; признание необходимости существования философии науки, предмет которой отличается от предмета социологии.

Социологи нового поколения:
только социологическими методами можно изучить научное знание во всех его характеристиках; полное включение в социологию всей проблематики философии и логики социологии.

Это делается на том основании, что, по мнению микросоциологов, продукты научной деятельности нельзя понимать как схватывающие, воспроизводящие в себе нечто существующее в природном мире. Скорее, они выкованы, сконструированы, преобразованы в лаборатории из чего придается К. Кнорр-Цетина один из наиболее ярких представителей микросоциологических исследований, называет внешними для науки, несущественными для ее понимания отношения природа — научное знание, а внутренними для науки, выражающими ее суть — социальные отношения внутри научной лаборатории.

По мнению К. Кнорр-Цетины, теория как продукт научной деятельности является специфической конструкцией, несущей на себе печать ситуационной случайности и структуры интересов, вплетенных в процесс, породивший ее. Продукты науки не могут быть адекватно поняты без анализа процедуры их конструирования. Это значит — то, что случается в процессе конструирования, небезразлично к результатам, которые мы получаем.

Это означает также, что продукты науки должны рассматриваться как внутренне структурированные в процессе производства, независимо от вопроса об их внешнем структурировании через установление их соответствия или несоответствия с реальностью.

Такая исходная постановка вопроса сразу же исключает из рассуждений К. Кнорр-Цетины о науке познавательное отношение человека к действительности.

— Деятельность ученых в лаборатории, которая воплощает для К. Кнорр-Цетины науку в целом, замыкается на саму себя без выхода на внешний мир как предмет познания.

— Научные результаты, включая эмпирические данные,
характеризуются прежде всего как итог процесса производства.

— Процессы производства включают в себя цепочки решений и обсуждений, предполагающие необходимость выбора. Каждый выбор делается на основе предыдущего набора процедур выбора, и в свою очередь является основанием для последующих селекций.

Сложность научных конструкций, появляющихся в результате разнообразных выборов, которые делаются учеными в конкретной лаборатории, побуждает нас считать маловероятным, чтобы продукты научной деятельности были получены одним и тем же способом при разных обстоятельствах, считает К.Кнорр-Цетина. Это значит, очень мало вероятно, чтобы процесс производства результата можно было повторить. Это стало бы возможным только в том случае, если бы большинство процедур выбора было жестко фиксировано или осуществлялось сходным образом.

Любое новшество в науке К.Кнорр-Цетина рассматривает как итог социального взаимодействия и обсуждения.

Инновация и ее принятие — это моменты временной стабилизации внутри процесса конструирования знания, который в своей основе — социальный процесс. В этот процесс, по мнению К. Кнорр-Цетины, должны быть возвращены пространство и время.

Именно поэтому в последние годы в микросоциологии приобрели большое значение понятия ситуации и зависимости от контекста. Когда ученый оформляет свой результат в научную статью, он деконтекстуализирует продукт своей работы. Чтобы восстановить контекстуальность науки, мы должны пойти в лабораторию, считает К.Кнорр-Цетина, и наблюдать процесс производства знания. Тогда научный метод можно видеть как локализованную форму практики, а не как парадигму универсальности, не обладающую своим конкретным местом. Научный метод укоренен в социальном действии так же, как и другие форм социальной жизни.

В отличие от Р.Мертона, К.Кнорр-Цетина не признает права на существование за пределами лаборатории гносеологической проблематики. Проводимый ею социологический анализ исчерпывает, по ее мнению, все характеристики науки и явно является самодостаточным. К.Кнорр-Цетина принадлежит к новому поколению социологов науки, для которых характерен уход от понимания науки как познавательной деятельности, и при этом они погружаются в анализ социальной деятельности в лаборатории, которая преднамеренно очищает-
ся по возможности от всех следов логической всеобщности и философской рефлексии.

Научное знание — это совсем не то, что мы привыкли с ним связывать. Его нельзя вынести за пределы лаборатории в некую совершенно чуждую ей область необходимого и объективного. За пределами лаборатории знание неизбежно сохраняет на себе печать именно этой лаборатории и именно этих конкретных условий его производства.

Таким образом, в микросоциологии мы видим еще один способ понимания социальности в науке как совокупности социальных отношений внутри лабораторий, отношений, которые складываются в процессе конструирования знания.

Такая постановка вопроса является прямым вызовом социологии Р. Мертона, где знание отдалается от всего, что сопутствовало его возникновению в голове ученого, от любого социального контекста.

8. НАУЧНОЕ СООБЩЕСТВО

Признание во второй половине XX в. многообразия форм социальности в науке означает повышенное внимание исследователей к субъекту научной деятельности, будь то отдельный ученый, научное сообщество или исследовательская лаборатория.

Совершенно другое положение вещей мы видим в начале прошлого века, в период становления прогрессистской, кумулятивистской историографии науки. Отдельный человек для О. Конта, например, — это ничто в социальном плане, человечество — это все. Человеческое существо — это прежде всего, биологическое существо, подчиняющееся в своем развитии вечным и неизменным природным законам. Изменчивость, историзм возможны только в области социального, поэтому именно социология дает исторический метод.

Отсюда соответствующий взгляд и на ученого: индивидуальная деятельность ученого исключается из сферы социального, признаки социального распространяются только на общество в целом, и на историю науки, в частности.

Деятельность ученого по производству научного знания в лучшем случае психологический процесс.

В значительной степени в связи с таким асоциальным пониманием деятельности ученого вопрос о внутренней социальности науки не ставился. Деятельность ученого по производству нового научного знания и скла-
дывающиеся на этой основе отношения между ученными воспринимались как нечто отличное от социальных отношений в сфере политики или производства, и никакой социальной специфики в них не усматривалось.

Для этого были вполне реальные основания в формах существования науки в обществе:
— наука еще не сформировалась как социальный институт;
— вся социальность науки сконцентрировалась на ее границах, в ее отношении с другими общественными институтами.

Во второй половине XX в. специальным предметом изучения становится внутренняя социальность науки, оформившаяся прежде всего в научном сообществе.

Особенно полно и глубоко понятие научного сообщества проанализировано Т. Куном в его книге «Структура научных революций».

Включение именно этого понятия в куновскую концепцию истории науки навлекло на ее автора особенно ожесточенный огонь критики. Куна обвиняли в иррационализме на том основании, что он вместо логического объяснения того, почему научное сообщество отвергает старую теорию и принимает новую, выдвигает социальные и психологические аргументы.

Действительно, в его книге имеются утверждения, что переход к новой теории может быть основан лишь на вере в ее будущую плодотворность или на смутном эстетическом чувстве, что главной составляющей убеждений, которых придерживается научное сообщество в данное время, всегда являются личные и исторические факторы — элемент, по видимости, случайный и произвольный.

Критика в адрес Куна по этому вопросу не случайна, здесь на самом деле кроется серьезная опасность оказаться за пределами логики и рациональности. Основная трудность, которая встает на пути исследователей научного сообщества, состоит в том, что вновь и вновь возникает и не поддается преодолению демаркационная линия между социальными отношениями внутри научного сообщества и содержательной стороной научных идей.

В научном сообществе присутствуют очень разные формы социальных отношений.
— Речь может идти об отношениях начальника и подчиненных, ученых и неученых, финансистов, менеджеров и т.д.
— Тщательному анализу подвергаются этические нормы поведения ученых, мотивация их деятельности, цели, которыми они руководствуются в выборе профессии и в своей работе.

Важно отметить, что эта группа социальных отношений, хотя и являетаяся специфической именно для научного сообщества как некоторой социальной структуры, тем не менее с содержательной стороной научных идей связана лишь очень опосредованно.

Наряду с отношениями этого типа следует выделить способ общения между учеными в ходе решения и обсуждения сугубо научных проблем.

— В этом отношении каждый ученый выступает уже не как занимающий определенное служебное положение, не как руководствующийся какими-то вненаучными целями, а как представляющий определенную логическую позицию в научном споре, как сторонник той или иной научной парадигмы-теории.

Другими словами, отношения между учеными в данном случае выражают собой отношения между теориями, между разными научными позициями. Ученый ведет себя определенным образом по отношению к своему коллеге именно в силу своей убежденности в истинности тех или иных научных положений.

Если анализируется достаточно фундаментальная для развития научных идей ситуация (ситуация научной революции, например), то ученые в споре друг с другом как бы

персонифицируют различные способы логической интерпретации.

При этом критерием того, в какой мере тот или иной ученый выражает в научном споре действительно логическую позицию, а не какие-то свои субъективные, случайные для развития науки особенности личности, является возможность замены его вымышленным персонажем, как это имеет место в «Диалогах» Г.Галилея или в «Доказательствах и опровержениях» И.Лакатоса.

Все эти различия однако не приводят сторонников Т. Куна к решению центральной проблемы: как избежать релятивизма, т.е. изменения научного знания при переходе от одного научного сообщества к другому, от одних социальных условий к другим.

НЕКОТОРЫЕ ИТОГИ

Важнейшим итогом анализа социальности науки в ХХ в. стало ее понимание как некоторой трудности, как определенного препятствия на пути
создания целостных концепций науки и ее развития. Если в середине века в спорах интерналистов и экстералистов неявно предполагалось, что все имеют в виду примерно одно и то же, и рассуждая о социальности в науке, расходятся только в оценке ее роли, то в последние десятилетия признается существование разных видов социальности, которые изучаются, разрабатываются, сопоставляются, сравниваются.

Социальность становится проблемой.

Это объясняется прежде всего особенностями развития самой науки во второй половине XX в.:

— наука превращается в сложный социальный организм, включающий в себя социальные структуры разного типа (научно-исследовательская лаборатория, университет, проблемная группа, научное сообщество, невидимый колледж);

— само научное знание меняется и в своей дисциплинарной структуре, и в своих логических, содержательных характеристиках, причем направление этих изменений позволяет говорить в определенном смысле о его гуманизации.

С другой стороны, движение мысли внутри дисциплин, изучающих науку (история, философия, социология), подводит исследователей к толкованию социальности науки как явления неоднозначного, требующего дифференцированного подхода и анализа как некоторой проблемы. Можно выделить несколько уровней в изучении социальной природы науки:

— во-первых, влияние внешних социальных факторов на науку;

— во-вторых, изучение внутренней социальности науки, причем эта социальность понимается в двух смыслах: как общественный институт, наподобие производственного, военного, политического и т.д., и как имманентное сообщество ученых, занятых деятельностью по производству нового знания;

— в-третьих, взаимодействие внутренней социальности науки с внешней:

как соотносятся результаты внешних социальных воздействий на науку и результаты деятельности в рамках внутренней социальности науки;

— наконец, как переносятся (и переносятся ли вообще) особенности внутренней социальности научного сообщества, занятого производством знания, на логическую структуру и содержание самого этого знания.

(385)
Последняя проблема — самая трудная для современной историографии науки, а также для философии и социологии науки. Внутренняя социальность каким-то образом уничтожает логику и истину в трудах многих современных исследователей науки, и это заставляет переосмыслить заново эти столь существенные для науки понятия.

Выход к проблематике такого рода обусловлен резкой переориентацией исследователей науки конца XX в. относительно взаимодействия науки и общества.

Для историографии науки прошлого века в целом характерно рассмотрение взаимоотношения наука — общество в плане зависимости общественного развития от развития научных идей. Научные идеи выступают как двигатель развития общества.

Вектор действия силы направлен от науки к обществу, вся история цивилизации выступает как функция развития научных идей.

Постановка социальных проблем истории науки в XX в., особенно в конце XX в., диаметрально противоположная.

Теперь особенно значимым становится воздействие общества на науку.

Уже наука выступает как функция развития общества.

Промежуточным этапом между этими двумя крайними позициями в истолковании соотношения истории науки и истории общества был взгляд на эти две линии развития как на независимые друг от друга.

Научные идеи развиваются по своим законам, а общество — по своим.

Взаимодействие между ними может вносить лишь случайные изменения в процесс их развития.

XVII. ОБЩИЕ МОДЕЛИ ИСТОРИИ НАУКИ

В настоящее время наиболее четко вырисовываются три основные модели исторических реконструкций науки:

— история науки как кумулятивный, поступательный, прогрессивный процесс;

— история науки как развитие через научные революции;
— история науки как совокупность индивидуальных, частных ситуаций (кейс стадис).

Все три типа исторических исследований сосуществуют в современной (конец XX в.) историографии науки, но возникли они в разное время и на разные периоды приходится доминирование в истории науки каждой из них.

Кумулятивистская, прогрессистская модель исторического развития науки наиболее прочно связана с позитивистской философией, а потому, вместе с кризисом этой последней в середине XX в., она претерпела серьезные трансформации.

Были переосмыслены, продуманы заново фундаментальные основания кумулятивистской модели, и в результате она уступила доминирующее положение модели, в которой на первый план выдвинулись научные революции. Через научные революции, в ходе которых возникает принципиально новое знание, в историографию науки проникают идеи особенного, конкретного, а вместе с ними и понимание истории как включающей в себя факты-события, уникальные, не поддающиеся обобщению, но существующие в контексте общения.

Постепенно приобретает все большее значение и начинает претендовать на доминирующее положение новая модель исторической реконструкции, кейс стадис (изучение отдельных случаев, казусов).

(388)

1. КУМУЛЯТИВИСТСКАЯ МОДЕЛЬ

ОБЩАЯ ХАРАКТЕРИСТИКА

В науке больше, чем в какой-либо другой сфере человеческой деятельности, очевидно, что в истории этой деятельности происходит накопление знаний. Это обстоятельство стало объективной основой для формирования кумулятивистской модели развития науки.

Вот как звучат ее основные положения.

— Каждый последующий шаг в науке можно сделать, лишь опираясь на предыдущие достижения; новое знание всегда совершеннее, лучше старого, оно точнее, адекватнее воспроизводит действительность, а потому все предыдущее развитие науки можно рассматривать лишь как прелюдию, как подготовку современного состояния.

— В прошлом значение имеют только те элементы научного знания, которые соответствуют современным научным теориям. Идеи и принципы,
которые были отвергнуты современным состоянием науки, являются ошибочными, и в истории представляют собой заблуждения, недоразумения, зигзаги в сторону от столбовой дороги ее развития.

Наиболее полно идеи кумулятивного, поступательного, непрерывного развития науки были сформулированы в конце XIX — начале XX вв., прежде всего такими авторами трудов по истории науки как Э.Мах и П.Дюгем. Они полностью освободили историю и от прерывностей, и от качественного разнообразия отдельных ее этапов.

КАЧЕСТВЕННО РАЗЛИЧНЫЕ ЭТАПЫ В НЕПРЕРЫВНОМ РАЗВИТИИ НАУКИ

Большой популярностью в XIX в. пользовался закон трех стадий О.Конта. По О.Конту, этому закону подчиняется развитие и неорганического мира, и органического, и человеческого общества, и науки, в частности.

Закон трех стадий О.Конта, которые олицетворяли для него теоретическое осмысление истории, предполагает наличие трех качественно отличных друг от друга этапов как в развитии науки в целом, так и в развитии каждой дисциплины и даже каждой научной идеи.

Три стадии развития по О.Конту —

теологическая (религиозная),
метафизическая (философская),
положительная (научная)

— радикально отличаются друг от друга.

Как писал О.Конт, «каждая из наших главных идей, каждая из отраслей нашего знания проходит последовательно три различных теоретических состояния: состояние теологическое или фиктивное, состояние метафизическое или абстрактное, состояние научное или положительное».

Конт следующим образом характеризует эти три стадии.

— В теологическом состоянии человеческий дух, направляя свои исследования на внутреннюю природу вещей, считает причиной явлений сверхъестественные факторы.

— В метафизическом состоянии, а оно есть промежуточное между теологическим и положительным, сверхъестественные факторы заменены абстрактными силами или сущностями.
— «Наконец, в положительном состоянии, — как писал О.Конт, — человеческий дух познает невозможность достижения абсолютных знаний, отказывается от исследования происхождения и назначения существующего мира и от познания внутренних причин явлений и стремится, правильно комбинируя рассуждение и наблюдение, к познанию действительных законов явлений, т.е. их неизменных отношений последовательности и подобия». Количество общих идей, которым подчиняются отдельные факты, с прогрессом науки, уменьшается. История теоретизируется.

Однако непрерывность перехода от одной стадии к другой предполагается уже и в законе трех стадий. Об этом писал К.Сен-Симон, у которого О.Конт заимствовал наиболее интересные по своему содержанию мысли, находясь под большим его влиянием.

Мы читаем у К.Сен-Симона: «Всю работу человеческого разума до того, как он начал основывать свои суждения на наблюдениях и исследованных фактах, нужно рассматривать как предварительную работу».

Другими словами, прошлый история важна и интересна только как предыстория, как подготовка настоящего. С этим был полностью согласен и О.Конт.

Внутри позитивистской философии Г. Спенсер осуществил заметный сдвиг в сторону понимания истории науки как исключительно монотонного, поступательного, непрерывного процесса. Он не согласен с О.Контом в том, что есть три способа мышления, радикально противоположен друг другу.

По мнению Г. Спенсера, есть только один метод, положительный или научный.

Меняется лишь степень общности наших концепций, которая зависит от ширины обобщений, увеличивающейся вместе с накоплением опыта. Прогресс наших знаний, полагает Г.Спенсер, с самого начала и до конца является, по существу, одинаковым. Процесс научного мышления и в прошлом, и в настоящем включает в себя только позитивные способы исследования.

На примере Г.Спенсера видно, что отказ в рамках позитивистской философии от закона трех стадий означал переход на позиции откровенного эволюционизма.

Отвергая хоть какое-то значение философского размышления для науки, Г.Спенсер переключает основное внимание исследователя науки на момент обоснования знания (а не на его возникновение).
Прерывность в науку вторгается прежде всего актами творчества, появлением нового знания, не похожего на старое, но которое надо каким-то образом вывести из старого, чтобы сохранить непрерывность развития. Именно появление принципиально нового знания, возникновение фундаментально новой теории, иными словами, революционные периоды в развитии науки характеризуются скорее философским, чем естественнонаучным типом мышления.

Выводя за пределы науки всякое философствование, Г. Спенсер, тем самым, максимально «сглаживал» историю науки, делал ее поступательно кумулятивной.

(391)

ТЕОРЕТИЧЕСКОЕ И ЭМПИРИЧЕСКОЕ В ИСТОРИЧЕСКИХ ИССЛЕДОВАНИЯХ

На базе идей о непрерывном, поступательном развитии научного знания большинство мыслителей первой половины прошлого века ставили задачу обнаружить законы исторического развития и выявить таким образом порядок в хаосе событий прошлого.

Историки, прежде всего позитивистски ориентированные, стремились сделать историю такой же точной теоретической наукой, как механика или астрономия.

Большинство существовавших к началу XIX в. исторических работ не удовлетворяли историков как слишком фактологические, не содержащие в себе ничего, помимо набора многочисленных сведений, подобранной по случайным признакам, часто в соответствии с чисто индивидуальными особенностями, вкусами, интересами самого историка.

Об отставании исторических исследований от других форм научного знания в начале века писал еще К. Сен-Симон: «История, действительно в научном отношении еще не вышла из детских пеленок. Эта важная отрасль нашего знания пока представляет собой лишь собрание фактов, более или менее точно установленных. Но эти факты не объединены никакой теорией, они еще не увязаны в порядке последовательности».

Если уж к историческому знанию как таковому было столь скептическое отношение, то к истории науки требования еще более ужесточались.

Все многообразие человеческих поступков, волевых действий с неизбежно сопровождающими их случайностями должно подчиняться закономерностям, тем более это относится к развитию научных идей.
О.Конт писал: «Подлинной истории науки, т.е. теории реальной философии главных открытий, еще ни в какой мере не существует». Есть только компиляции, продолжает О.Конт, составленные без всякого принципа, произвольно и обладающие очень сомнительной полезностью. Этот набор материалов не может быть непосредственно использо-
ван для построения какой бы то ни было исторической доктрины без предварительной неизбежной переработки.

Если историк хочет понять историю человечества как закономерный процесс, он должен открыть законы развития научных идей.

Так думали и К.Сен-Симон, и О.Конт, и Г.Бокль.

Научные идеи, согласно позитивистским представлениям, детерминируют развитие общества, причем детерминируют его несколькими путями.

— Во-первых, развитие самого позитивного метода требует его распространения на все области знания, в том числе на историю и социологию. Позитивный характер истории и социологии предполагает, что эти отрасли знания и в обществе (подобно тому, как естествознание в природе) должны открывать законы.

— Во-вторых, законы механики, например, или биологии в своем содержании служили основой для создания моделей общественного развития: вспомним инженерный характер утопических моделей общества, когда предполагалось, что сконструированное по законам механики общество будет функционировать так же слаженно, как и хорошо сделанная машина; или закон трех стадий О.Кон-та, который за основу берет биологическое развитие организма.

— Наконец, особенности развития научных идей (поступательность, прогрессивность, непрерывность) передавались в качестве основных характеристик всему обществу в целом. История общества детерминируется особого рода пониманием содержательной стороны развития научных идей.

ПРИНЦИП НЕПРЕРЫВНОСТИ Э. МАХА

Э. Мах формулирует специальный «принцип непрерывности», который позволяет ему включить научное открытие в непрерывный ряд развития.

Вот как, по мнению Э.Маха, рассуждал И.Ньютон, когда распространял действие законов земной механики на всю Вселенную:
«Он привык — и эта привычка характерна, по-видимому, для каждого истинно великого исследователя — раз принятное представление по мере возможности сохранять и для случаев с видоизмененными условиями, сохранять в представлениях то же однообразие, которое мы констатируем в процессах природы. То, что раз и где-либо оказывается свойством природы, оказывается таковым всегда и везде, даже если оно и не везде одинаково быстро бросается в глаза. Раз явление тяжести наблюдается не только на поверхности земли, но и на высоких горах и в глубоких шахтах, то естествоиспытатель, привыкший к непрерывности идей, представляет себе это явление и на больших высотах и глубинах, чем те, которые нам доступны. Возникает вопрос: где же пределы действия тяжести? Не захватывают ли они и луну? Раз поставлен этот вопрос, огромный полет фантазии есть дело совершившееся, и великое научное открытие ввиду силы разума Ньютона представляет собой лишь необходимое следствие».

Основным звеном в мышлении естествоиспытателя Э.Мах считает распространение имеющегося способа понимания на новый круг фактов. Ученый должен выискивать в явлениях природы однообразие, должен уметь представить новые факты таким образом, чтобы они могли быть подведены под уже известные законы.

Научное открытие в том и состоит, чтобы представить неизвестное, непонятное явление или факт действительности как подобное уже чему-то известному и как подчиняющееся тому же правилу или закону, что и это известное.

Научное открытие не только не является, по мнению Э.Маха, перерывом постепенности, революцией, но как раз наоборот, оно возможно только тогда, когда естествоиспытатель опирается на принцип непрерывности.

НЕПРЕРЫВНОСТЬ В ИСТОРИИ ЧЕРЕЗ ПОИСКИ ПРЕДШЕСТВЕННИКОВ

Если у Э. Маха вообще не возникает проблемы научного открытия как некоторого перерыва постепенности в развитии, то П.Дюгем фиксирует эту проблему. Тем не менее, обсуждая ее

П. Дюгем приходит тоже к выводу о непрерывном, постепенном характере развития науки, и здесь его позиция ничем не отличается от позиции Э.Маха.
Исходная предпосылка рассуждения П. Дюгема по этому вопросу состоит в том, что хотя феноменологическое присутствие в истории науки крупных сдвигов, переворотов и бесспорно, но для того, чтобы включить их в какую-то рациональную, историко-научную реконструкцию, их надо свести к постепенности, непрерывности, тогда они будут поняты.

Когда говорят о П. Дюгеме как историке, прежде всего упоминают его идею абсолютной непрерывности и кумулятивности развития науки, которая главным образом и определила его историко-научную концепцию. Результатом развития именно этой идеи явилась «реабилитация» средних веков, осуществленная П. Дюгемом, который убедительно показал огромное значение средневековой науки для формирования науки Нового времени.

В его трудах средневековье перестало быть просто провалом, мрачной эпохой, периодом, когда отсутствовало всякое более или менее разумное научное размышление.

Дюгем скрупулезно и тщательно прослеживает тончайшие интеллектуальные нити, соединяющие мыслителей разных поколений и разных эпох.

С этой точки зрения особенно интересно его исследование наследия Леонардо да Винчи. Подзаголовок к этому труду говорит сам за себя — «Те, которых он читал и те, которые его читали», т.е. П. Дюгем изучает предшественников Леонардо и тех, кто использовал его идеи в своих исследованиях, таким путем определяется подлинное место Леонардо в истории.

П. Дюгем стремится показать, что Леонардо обязан всем, что он знал в области механики и физики, не только своим опытам и размышлениям, но и трактовкам своих предшественников, которых он читал.

Новые и плодотворные идеи великого Леонардо да Винчи, пишет П. Дюгем, так же связаны со средневековой схоластикой, как могучая зеленая крона дуба с бесплодной почвой, на которой он растет. П. Дюгем смотрит на Леонардо да Винчи как на личность, резюмирующую и конденсирующую

в себе весь интеллектуальный конфликт, в результате разрешения которого итальянский ренессанс стал наследником парижской схоластики.

Дюгем следующими словами выражает основные принципы, которые он кладет в основу своей историко-научной концепции:
«История науки искажается в результате двух предрассудков, которые так похожи друг на друга, что их можно было бы принять за один: обычно думают, что научный прогресс осуществляется в результате внезапных и непредвиденных открытий; полагают, что он есть плод труда гения, у которого нет никаких предшественников. Очень полезно убедительно показать, до какой степени эти идеи неверны, до какой степени история науки подчиняется закону непрерывности. Великие открытия почти всегда являются плодом подготовки, медленной и сложной, осуществляемой на протяжении веков. Доктрины, проповедуемые наиболее могучими мыслителями, появляются в результате множества усилий, накопленных массой ничем не примечательных работников. Даже те, кого принято называть творцами — Галилеи, декарты, ньютони не сформулировали никакой доктрины, которая не была бы связана бесчисленным количеством нитей с учениями их предшественников. Слишком упрощенная история заставляет нас восхищаться ими и видеть в них колоссов, не имеющих корней в прошлом, непостижимых и чудовищных в своей изолированности. История, несущая больше информации, дает нам возможность проследить длинный ряд развития, итогом которого они являются. «Как и природа, — пишет П.Дюгем, — наука не делает резких скачков».

В другом своем многотомной труде «Система мира», где прослеживаются генезис и развитие космогонических представлений с древнейших времен и до Н.Коперника, П.Дюгем утверждал:

«В генезисе научной доктрины нет абсолютного начала; как бы далеко в прошлое ни прослеживали цепочку мыслей, которые подготовляли, подсказывали, предвещали эту доктрину, всегда в конечном итоге приходят к мнениям, которые в свою очередь были подготовлены, подсказаны, предвещены; и если прекращают это прослеживание следующих друг за другом идей, то не потому, что нашли начальное звено, а потому, что цепочка исчезает и погружается в глубину бездонного прошлого».

В своей книге «Физическая теория» П.Дюгем эту же мысль формулирует следующим образом:

«Физическая теория не есть продукт мгновенного творчества, а она есть всегда медленный и прогрессивно развивающийся результат известной революции».
Дюгем исходит из общего для всех позитивистов утверждения, что естествознание имеет своей целью объяснить реальность, т.е. обнажить то, что скрыто за явлениями, обволакивающими ее вроде бы дымкой.

Но в отличие от О.Конта, П.Дюгем полагает, что в том случае, когда естествоиспытатель пытается дать объяснения, т.е. когда он пускается в метафизические рассуждения, он ничуть не способствует приближению собственно научного, положительного этапа своего мышления.

Метафизические рассуждения не только не являются необходимыми для физика, но наоборот, мешают ему и лишь случайно могут оказаться некоторым внешним стимулом для достижения значимых результатов в науке.

Идея кумулятивного, непрерывного развития науки опирается у П.Дюгема на четкое отделение ее от философии.

Все катаклизмы, споры, дискуссии, трансформации выводятся им за пределы истории науки, поскольку связаны с попытками объяснения, которое целиком принадлежит к области метафизики.

Переосмысление интерпретации истории науки с позиций кумулятивизма, непрерывности, прогресса в середине XX в. было связано с общим кризисом позитивистской философии, который нашел своё выражение в историографии науки через привнесение сюда идей прерывности, особенности, уникальности, революционности. Первым серьёзным прорывом в этом направлении были работы А.Койре.

2. НАУЧНЫЕ РЕВОЛЮЦИИ В ИСТОРИИ НАУКИ

СУТЬ НАУЧНОЙ РЕВОЛЮЦИИ XVII В. ПО А.КОЙРЕ

В спор сторонников эволюции и сторонников революции А.Койре встает сразу же на стороне последних. Период XVI—XVII веков он рассматривает как время фундаментальнейших революционных трансформаций в истории научной мысли. Изучая этот период, А.Койре пришел к мысли, что европейский разум осуществил тогда очень глубокую умственную революцию, которая модифицировала самые основы и даже структуру нашей мысли.

А.Койре выступает против попыток преуменьшить или даже просто отрицать оригинальность и революционный характер мышления
Г. Галилея. Он утверждает, что кажущаяся непрерывность в развитии средневековой и современной физики, непрерывность, так упорно подчеркиваемая П. Дюгемом, лишь иллюзия.

А. Койре не отрицает, что существуют традиции, ведущие от работ средневековых ученых к работам Дж. Бруно, Г. Галилея и Р. Декарта, и все же вывод, который делает отсюда Дюгем — заблуждение.

«Хорошо подготовленная революция есть, тем не менее, революция», — счиата А. Койре.

А. Койре так представляет суть этой научной революции:

— прежде всего она привела, во-первых, к разрушению космоса, во-вторых, к геометризации пространства.

— До революции космос воспринимался как вполне завершенный и упорядоченный, как мир, в котором пространственная структура воплощала иерархию ценностей и степеней совершенственства, в котором «над» Землей, тяжелой и непроницаемой, «возвышаются» небесные сферы невесомых светил.

Этот мир был заменен бесконечной Вселенной, не заключающей в себе больше уже никакой естественной иерархии и объединенной только идентичностью законов.

— Вторая черта революции, геометризация пространства, очень тесно связана с первой.

Аристотелевское представление о пространстве как дифференцированной совокупности внутрипространственных мест было заменено на геометрическое, эвклидово представление о пространстве как о гомогенной и бесконечной протяженности.

Все это, в свою очередь, привело, пишет А. Койре, к отказу научной мысли от всех соображений, основанных на понятиях ценности, совершенства, гармонии, чувства и цели, и, наконец, к полному обесценению Бога, к полному разрыву между миром ценностей и миром фактов.

Самая фундаментальная работа А. Койре, где он развивает и обосновывает свою концепцию научной революции, — это «Галилеевские этюды» (1939). Исследование А. Койре произвело большое впечатление на историков и философов науки. Оно долгое время было знаменем борьбы против позитивизма в историографии науки.
А. Койре первым показал, что революция в истории науки — это некото рая прерывность и она не должна рассматриваться как нечто бесконечно далекое в прошлом.

Революция — не абсолютное начало, революция — это переход от одной научной теории к другой, от старой истины — к новой.

В ходе научной революции изменяется не только скорость, но само направление развития науки. Большая заслуга А. Койре в том, что он это показал.

ОТНОШЕНИЕ К НАУЧНЫМ РЕВОЛЮЦИЯМ ПРЕДСТАВИТЕЛЕЙ КУМУЛЯТИВИСТСКИХ МОДЕЛЕЙ РАЗВИТИЯ НАУКИ

При разработке теории научных революций исследователь сталкивается с фак том, что каким бы революционным и творческим ни был процесс возникновения нового знания в ходе научной революции, включенное в общую систему, это знание должно быть доказано, т. е. выведено и систематизировано, понятно как содержащееся в предыдущем знании.

Отсюда возникает и фундаментальное противоречие между процессом возникновения нового знания и необходимостью его обоснования в контексте научной теории.

Подход к развитию знания как к прогрессивному и кумулятивному процессу исторически и логически оправдан, но он таит в себе противоречие, которое до поры до времени остается скрытым.

Неверно думать, будто историки, придерживающиеся эволюционных взглядов, отрицали наличие революций в истории науки, наличие фундаментальных сдвигов в развитии естественнонаучных идей. Феноменологически они признавали революционные ситуации, но полагали, что понять их можно только путем включения в непрерывный ряд развития, путем сведения их к эволюционному процессу.

Эволюционистские концепции и отличаются друг от друга в значительной мере именно тем, каким образом осуществляется в их рамках такое сведение, такая форма отрицания революций.

— Обычно научные революции понимались как убыстренное эволюционное развитие, как такие периоды в развитии естествознания, когда в короткий промежуток времени совершается особенно много крупных открытий, связанных с именами выдающихся ученых.
Революционные этапы в развитии науки по своей сути и по своему характеру — та же эволюция, но осуществляющаяся более быстрыми темпами. Направление движения остается при этом абсолютно тем же самым.

Революции полностью вписываются в эволюционное движение, растворяются в нем.

Такой подход к истории науки во многом способствует написанию работ, в которых главное внимание уделяется перечислению, по возможности полному, научных достижений, расположенных в хронологическом порядке. При такой интерпретации истории науки возможен крайний случай, когда научные революции вообще исчезают из историко-научного исследования, даже в качестве феномена, требующего своего объяснения.

Примером этому может служить концепция Дж. Сартона, в которой научные революции не играют даже роли вспомогательных средств, единиц измерения или вех в периодизации истории науки. Периодизация у него чисто искусственная, он подразделяет историю естествознания на периоды в 50 лет на том основании, что это время творческой деятельности одного поколения ученых.

— Другой вариант понимания научной революции путем сведения ее к эволюции состоит в том, что при анализе любой революционной ситуации сама революция отодвигается все дальше и дальше в прошлое в результате нахождения бесконечно длинной цепочки предшественников великих ученых, феноменологически выступающих как свершители революции.

Революция в этом случае понимается как переход не от истины к истине, а от лжи к истина, от донаучных представлений к научным, как абсолютное начало.

В рамках же науки как таковой любая феноменологически видимая революция может быть сведена к более ранним высказываниям, достижениям предыдущих поколений ученых, истинам предшествующих эпох.

Однонаправленный, постулатный, непрерывный ряд развития сохраняется за счет изгнания за пределы науки всего, что не укладывается в рамки эволюционного развития. При этом, естественно, в центре внимания оказываются те элементы развития научного знания, которые можно рассматривать как вытекающие один из другого.
НАУЧНАЯ РЕВОЛЮЦИЯ КАК ОПРЕДЕЛИТЕЛЬ ХОДА ПОСЛЕДУЮЩЕГО РАЗВИТИЯ НАУКИ

Во второй половине XX в. при интерпретации научных революций выдвинулся на передний план следующий важный момент: межреволюционные периоды в развитии науки, изучение которых достигло, казалось бы, таких хороших результатов, трудно понять без соответствующей интерпретации научных революций, от такой интерпретации зависит понимание кумулятивных периодов.

Предполагается, что новая теория, возникшая в ходе научной революции, отличается от старой самым фундаментальным, принципиальным образом, а это означает переход к существенно иному типу деятельности. После революции развитие науки начинается, так сказать, заново.

Но если теория, или парадигма, или научно-исследовательская программа возникают сразу как целое, в своей завершенной и совершенной форме, как модель и инструмент деятельности в послереволюционный период, тогда от ученого в период после революции не требуется сколько-нибудь существенной доработки новой теории (парадигмы, научно-исследовательской программы) — она и так совершенна, речь может идти только о шлифовке деталей путем успешного решения проблем, законных в ее рамках. Именно такая точка зрения содержится в концепции Т. Куна.

Деятельность ученого в межреволюционные периоды постоянно совершенствует высокие качества новой теории или несколько трансформирует ее, приспосабливая к объяснению дополнительного набора фактов. В этом случае работа ученого после революции обращена, так сказать, в прошлое, к уже совершившейся революции и возникшей в результате нее теории.

Наука развивается, постоянно оглядываясь назад, движется вперед, и в то же время, как будто пятится.

Те трансформации, которые претерпевает теория, делают для нее возможным решение большего числа проблем, область ее применения расширяется. Но логическая безупречность ее исходных предпосылок страдает от таких трансформаций. Теория становится более неуклюжей, громоздкой. Грубо говоря, в послереволюционный период теория «ухудшается» и деградирует, пока в ходе новой революции она не оказывается побежденной своей соперницей.

Такой подход к научной революции предполагает постоянное разделение между контекстом открытия и контекстом подтверждения знания,
причем все усилия по изобретению нового, все творчество сконцентрированы в революционных ситуациях.

Что касается деятельности ученого в периоды между революциями, то здесь осуществляется исключительно подтверждение и доработка уже имеющегося наличного знания, использованное этого знания как инструмента, как средства для решения проблем, которые имеют значение в рамках этой теории.

Неизбежным результатом является чрезмерно заавтоматизированный, алгоритмический характер деятельности ученого в межреволюционный период.

СИЛЬНЫЕ И СЛАБЫЕ СТОРОНЫ ТРАКТОВКИ НАУЧНОЙ РЕВОЛЮЦИИ Т.КУНОМ

В такой позиции Т.Куна и его сила, и его слабость.

— Сила, поскольку он вычленил реально существующий аспект развития науки.

Действительно, новая парадигма или теория утверждаются в структуре научного знания последующей работой в их русле, приспосабливаются к объяснению нового круга явлений.

В истории науки наиболее удачным образом такого типа развития является, пожалуй, теория Птолемея с ее все увеличивающимся числом эпициклов, чрезвычайно усложняющих структуру теории, делающих ее громоздкой и вводимых снова и снова для объяснения вновь обнаруживаемых фактов.

Что же касается чрезвычайно формализованной, почти алгоритмической деятельности в русле определенной парадигмы, так это тоже факт и большая заслуга Т.Куна в том, что он проанализировал такую деятельность, связав ее с определенным способом понимания научной революции.

Нормальная деятельность ученого существует не сама по себе, она формируется революцией.

— Слабость позиции Т.Куна в том, что он, обращая внимание именно на эти аспекты научной деятельности, невольно в какой-то мере возвращаетается в прежнее русло рассуждений об истории науки, когда из развития науки тем или иным способом исключаются моменты творчества, они выводятся или на периферию науки, или вообще за ее пределы.
В концепции Т. Куна имеется явная тенденция рассматривать научное творчество как яркие, исключительные, редкие вспышки, определяющие очень определенно последующее развитие науки, в ходе которого добывшее ранее знание в форме парадигмы обосновывается, расширяется, подтверждается.

Несмотря на бессспорное наличие в книге Т. Куна и других аспектов мысли, исходная установка именно такая: развитие науки по преимуществу осуществляется через нормальную деятельность ученых, главная цель которой — наиболее успешным образом использовать в решении очередных задач победившую в последней революции парадигму, еще и еще раз подтвердить ее истинность и преимущества по сравнению с предыдущей парадигмой.

Деятельность в ходе научных революций — экстраординарная, работа же ученых в послереволюционный период — ординарная, нормальная, именно она позволяет отличать науку от других сфер духовной деятельности.

Развитие науки осуществляется с постоянной оглядкой назад, на парадигму, которая победила и полностью сформировалась в ходе последней революции.

ПРОГРАММА (ПАРАДИГМА) КАК ПРОЕКТ ДАЛЬНЕЙШИХ ИССЛЕДОВАНИЙ И ЕЕ СОБСТВЕННОГО РАЗВИТИЯ

Возможно другое понимание кумулятивных периодов, когда в интерпретации научных теорий мы исходим из предпосылки, что в ходе революции теория возникает не в своей полностью завершенной форме.

Эта точка зрения развивается особенно тщательно и последовательно И.Лакатосом, прежде всего в его книге «Доказательства и опровержения».

В отличие от Т.Куна, И.Лакатос не считает, что возникшая в ходе революции научно-исследовательская программа является завершенной и вполне оформленной. Непрерывность научного исследования в послереволюционный период складывается, по словам Лакатоса, из еще неясной в начале исследовательской программы, смутно вырисовывающейся в перспективе.

Программа выступает как проект дальнейших исследований и как проект ее собственного развития и окончательного оформления. До тех пор, пока продолжается такое совершенствование научно-исследовательской программы, И.Лакатос говорит о прогрессивном ее раз-
витии. Прогрессивное развитие завершается в некотором «пункте насыщения», после которого начинается регресс.

Положительная эвристика программы определяет проблемы, подлежащие решению, а также предсказывает аномалии и превращает их в подтверждающие примеры. Если у Т. Куна аномалии являются чем-то внешним по отношению к парадигме и возникновение их для парадигмы случайно, то в концепции И. Лакатоса аномалии предсказываются программой и являются внутренними для научно-исследовательской деятельности.

Очень важным признаком прогрессивного развития программы И. Лакатос считает способность программы предсказывать эмпирические факты (в том числе и те, которые могут вызвать аномалию). Когда программа начинает объяснять факты задним числом, это означает начало ее регрессивного развития, мощь программы начинает иссякать.

Даже самые прогрессивные исследовательские программы могут объяснять свои контрпримеры, или аномалии, только постепенно. Работа теоретика определяется долгосрочной программой исследований, которая предсказывает и возможные опровержения самой программы.

Развитие, совершенствование программы в послереволюционный период являются необходимым условием научного прогресса.

И. Лакатос вспоминает И. Ньютона, презиравшего тех людей, которые, подобно Р. Гуку, застревали на первой наивной модели и не имели достаточно упорства и способностей развити ее в исследовательскую программу, думая, что первая версия уже образует «открытие».

ДЕЯТЕЛЬНОСТЬ УЧЕНОГО В МЕЖРЕВОЛЮЦИОННЫЕ ПЕРИОДЫ

Посамому исходному замыслу И. Лакатоса деятельность ученого в межреволюционные периоды носит творческий характер.

Каким образом развивается, трансформируется, изменяется, совершенствуется первоначально высказанная догадка, И. Лакатос раскрыл в своей книге «Доказательства и опровержения».

Даже в ходе доказательства, обоснования знания, полученного в ходе последней более или менее значительной революции, это знание трансформируется, поскольку, полагает И. Лакатос, «человек никогда не доказывает того, что он намеревается доказать». Кроме того целью логического доказательства, утверждает И. Лакатос, является не достижение безусловной веры, а порождение сомнения.
По Т.Куну, все новые и новые подтверждения парадигмы, получающиеся в ходе решения очередных задач-головоломок, укрепляют безусловную веру в парадигму — веру, на которой держится вся нормальная деятельность членов научного сообщества.

У И.Лакатоса процедура доказательства истиности первоначального варианта исследовательской программы приводит не к вере в нее, а к сомнению, порождая потребность перестроить, усовершенствовать, сделать явными скрытые в ней возможности. В своей книге И.Лакатос анализирует, каким образом осуществляется рост знания через серию доказательств и опровержений, в результате которых изменяются сами исходные предпосылки дискуссии и доказывается не то, что первоначально предполагалось доказать.

У И.Лакатоса, в отличие от Т.Куна, революционная научно-исследовательская деятельность не является прямой противоположностью деятельности ученого в межреволюционные периоды. Это связано в первую очередь с пониманием научной революции.

Поскольку в ходе революции создается лишь первоначальный проект новой научно-исследовательской программы, то работа по ее окончательному созданию распределяется на весь послереволюционный период.

Во второй половине XX в. в историографии науки создается ситуация, когда понимание спокойных, эволюционных периодов в развитии науки стало полностью зависеть от той или иной интерпретации научной революции.

Теперь уже эволюция понимается через революцию.

Как и в эволюционистских концепциях, в некоторых вариантах которых революции исчезали даже из феноменологических описаний (Дж.Сартон), так и теперь, когда в центре внимания оказались научные революции, спокойные, кумулятив-независимые периоды в развитии науки перестали фигурировать в ряде историко-научных концепций.

Это относится, например, к К.Попперу, который особо подчеркивает перманентный характер научных революций, для него история науки — это непрерывная цепь революций. Каждая новая теория тем более наука, чем больше у нее возможностей быть фальсифицированной, опровергнутой; чем чаще происходит такие опровержения, тем о более успешном развитии науки можно говорить.
НАУЧНАЯ РЕВОЛЮЦИЯ КАК СМЕНА ФУНДАМЕНТАЛЬНЫХ ОСНОВАНИЙ НАУКИ

Итак, в историографии науки произошел сдвиг внимания из области прогрессивного, непрерывного развития науки в область создания исходных предпосылок, исходных идеализации науки, которые формируются в ходе научной революции.

Дело не просто в том, что наряду с кумулятивными периодами все больше и больше внимания уделяется революционным ситуациям, а в том, что само понимание кумулятивных этапов в истории науки, как оказывается, зависит от той или иной интерпретации научных революций.

В кумулятивистских концепциях, согласно которым революция может быть отнесена к бесконечно далекому прошлому, тот факт, что развитие науки, понимаемое как выводимые одна из другой единицы знания, в своем генезисе основывается на принципах, не поддающихся логическому обоснованию, до поры до времени не привлекал внимания и не казался странным.

Положение вещей облегчалось еще и тем, что фундаментальные революции совершались сравнительно редко. В большинстве случаев революции не предполагали трансформации исходных логических и философских предпосылок. Понятия причинности, пространства, времени не были существенны для построения отдельной научной теории.

Но с конца прошлого века теоретические революции происходили более часто и стали более радикальными, причем революционные изменения имели место в науках, которые формировали исходные аксиомы и логические предпосылки.

Если обратиться к истории науки, то подлинно глобальными, фундаментальными можно назвать лишь две революции:
революцию XVII в.
и научно-техническую революцию XX в.

— Революция XVII в. как бы смоделировала развитие естествознания через научные революции на последующие два века.
Вплоть до начала XX в. все изменения в естествознании совершенствовали, усложняли, корректировали научное знание.
Новые достижения в отдельных отраслях не столько опровергали прошлое, сколько встраивались в общий дедуктивный ряд, не изменения исходных аксиоматических начал науки нового времени.

— Только в начале XX в. совершается очередная действительно фундаментальная революция с пересмотром исходных идеализаций пространства, времени, движения в контексте создания теории относительности и разработки квантовой механики.

К середине века революция пошла вширь, стала развиваться экстенсивно в сторону непосредственного использования научных результатов в технике и промышленности.

Достижением считается в первую очередь, возможность применения полученных результатов на практике. Обсуждение начал отступает на задний план, интерес к ним утрачивается. Важно, как работает научное знание. Но через развитие техники, ее компьютеризацию и автоматизацию, уже на новой основе научный поиск опять замыкается на субъекте деятельности. Не случайно революцию XX в. называют научно-технической. Опять возобновляется интерес к началам.

Кризис позитивизма в середине века, в свою очередь, подтолкнул исследователей науки к пересмотру самого содержания понятия научной революции в связи с изменением ее роли в истории.

В это время подавляющее большинство историков и философов исходили из убеждения, что главное — это более глубокое, полное, детальное изучение научных революций разного типа, революций, которые прежде, при доминировании традиционно-

gо представления о развитии науки, как совершающегося поступательно, прогрессивно, непрерывно, исследовались недостаточно внимательно.

ОСОЗНАНИЕ НЕОБХОДИМОСТИ ПЕРЕОСМЫСЛЕНИЯ ПОНЯТИЯ РЕВОЛЮЦИИ

Научная революция, ставшая одним из главных предметов изучения специалистов по науке разного профиля, изучается теперь вширь и вглубь.

Появляются исследования того, когда впервые появилось само словосочетание «научная революция», как оно соотносилось с понятием социальной революции, как постепенно повышался интерес к научным революциям и какие были спады этого интереса, какую можно предложить классификацию научных революций.
И наконец, историки науки пытаются «переписать» ее в соответствии с новыми представлениями о роли и месте научных революций в развитии научных идей, с учетом той большой работы, которая была проведена исследователями по разработке, дальнейшему уточнению, углублению и конкретизации понятия научной революции.

Можно вспомнить многочисленные попытки историков науки в 60-х и начале 70-х годов переписать истории отдельных научных дисциплин по куновской схеме, где эпохи крупных научных революций сменяются периодами нормальной науки, когда ученые работают в рамках парадигмы, возникшей в ходе последней научной революции. Авторы такого рода работ продолжали исходить из предпосылки, что наука развивается постепенно-кумулятивно, но непрерывность этого развития нарушается вкраплениями научных революций.

Однако осознание изменений, которые произошли в самом истолковании понятия «научная революция», привело к пониманию невозможности построения на такой основе истории науки.

НАРУШЕНИЕ ЛОГИЧЕСКОЙ СТРОЙНОСТИ ТРАДИЦИОННЫХ ИСТОРИЧЕСКИХ РЕКОНСТРУКЦИЙ

Сложности в привычных исторических исследованиях возникали перед историком, когда он пытался совместить традиционную схему исторического исследования с вновь формирующимся понятием научной революции.

Прежде всего, возникал вопрос:
как справиться с прерывностью исторического процесса, если тем или иным способом не сводить революцию к эволюции?
В традиционных историко-научных концепциях в ходе научной революции старая фундаментальная теория разрушалась, на ее месте утверждалась новая, и вся прошая история перестраивалась как предыстория новой теории. Революции как будто бы и не было.
Вся прошлая история рассматривалась как постепенное, планомерное, прогрессивное движение в сторону современной теории, являющейся на сегодняшний день кульминацией, вершиной всей предыдущей истории. Наступает следующая революция, возникает новая фундаментальная теория и происходит новая радикальная ломка прошлого.
Таким образом, за изгнание научных революций из окончательных вариантов исторических исследований приходилось платить дорогой ценой.
ной, прежде всего большим насилием над прошлым, его неоднократным
разрушением после каждой очередной крупной научной революции и по-
строением заново истории в соответствии с научными представлениями
сегодняшнего дня. Наградой была, правда, возможность рационального
осмысливания событий прошлого, непрерывность, поступательность разви-
тия внутри каждого исторического исследования.

Вот этих-то преимуществ и лишался историк, когда он, следуя
Т.Куну, включал в свою историческую реконструкцию научные револю-
ции.

В традиционных историко-научных построениях научная революция
стягивалась в точку, где происходила смена старой теории новой путем от-
каза от старой. За этим следовала перекристаллизация всей прошлой исто-
рии в соответствии с новым знанием.

Сама по себе точка фокусировки научной революции не расшифро-
вывалась логически, а вся сила логического анализа

(410)

направлялась на упорядочивание прошлого знания в соответствии с новой
теорией. Успех этого предприятия обеспечивался устранением революции
из логической реконструкции.

Когда же историки включили научные революции в непрерывный
ряд развития научных идей и попытались их интерпретировать рациональ-
ными средствами, то возник целый ряд сложных проблем.

— Возможно ли вообще перебросить мостик рациональности между
старой и новой теориями, если их логики диаметрально противоположны?
— Можно ли идти по пути создания некоторой метагеологики?
— Соизмеримы ли вообще эти теории?
— Какую роль играют социальные, психологические, этические, эс-
тетические и прочие факторы при решении вопроса о замене старой теории
новой?
— Как вообще будет выглядеть исторический процесс, если круп-
нейшие достижения прошлого будут истолковываться не как сменяющие
друг друга, а как сосуществующие?

РАЗРУШИТЕЛЬНАЯ ФУНКЦИЯ НАУЧНОЙ РЕВОЛЮЦИИ ПОД
ВОПРОСОМ

При попытках ответа на эти и другие вопросы неизбежно всплывает
на поверхность проблема изменения самого понятия научной революции.
Если понимать научную революцию как разрушение старого знания и возникновение нового, то единственно последовательным решением историка будет убрать из истории все прошлые революции, даже наиболее фундаментальные, поскольку их результаты заведомо обесцены всем последующим развитием, всеми последующими революциями.

С этой точки зрения научно значимой и истинной является только самая последняя теория, возникшая в ходе последней революции.

Если же историк не только включает научные революции в историческое повествование, но рассматривает их как наиболее существенные его элементы, то это означает весомость и значимость для исторической реконструкции и основных составляющих этих революций, а именно, двух следующих друг за другом во времени и сменяющих одна другую фундаментальных теорий. И они представляют интерес не только теми своими аспектами, которые в снятом виде вошли в современную теорию, но и как некоторая исторически определенная целостность, обладающая своими уникальными свойствами, гармонически включенными в определенную культуру, сочетающимися с социальным контекстом той или иной исторической эпохи.

Когда при этом ставилась задача восстановить логическую последовательность исторических событий прежними логическими средствами, неизбежно возникало противоречие.

Эти средства в принципе не могли успешно работать, поскольку изменилось прежнее представление об истории науки, когда единственно верной признавалась лишь последняя фундаментальная теория.

Отсюда бесцзмощность и искусственность большинства попыток написать историю науки, которая понималась как процесс

— поступательно прогрессивный, однонаправленный,

— а с другой стороны, включающий в себя как особо значимые научные революции, понимаемые по Т.Куну.

Кризис позитивизма в середине XX в. вызвал повышенный интерес к научным революциям, они стали предметом активного обсуждения и историков, и социологов, и философов науки.

Но постепенно, к концу 70-х — началу 80-х годов этот бум интереса к научным революциям спал, и сам термин «научная революция» стал встречаться все реже. Дело тут в первую очередь, по-видимому, в том, что серьезной трансформации подверглось само понятие научной революции,
и это привело к выдвижению на передний план ряда других понятий, более активно работающих при решении возникающих проблем в области истории, философии, социологии науки.

Вместе с включением научных революций в конечный вариант исторической реконструкции приобретают значение теории прошлого не как некоторые ошибки, заблуждения, зигзаги в сторону от генеральной линии научного развития, а как обладающие своей непреходящей значимостью, особенноностью и как при-

существующие в нашей современности именно в таком своем качестве.

Разрушительная функция научной революции ставится под вопрос. В качестве наиболее важной для исторического процесса рассматривается созидательная функция, возникновение нового знания, но без разрушения старого.

На передний план выдвигается представление о сосуществовании прошлого с настоящим. При этом предполагается, что прошлое не утрачивает свое своеобразие и не поглощается настоящим.

НАУЧНЫЕ РЕВОЛЮЦИИ ОПЯТЬ НА ЗАДНЕМ ПЛАНЕ ИСТОРИЧЕСКИХ ИССЛЕДОВАНИЙ

Сам по себе термин «революция», как и любой другой, исторически нагружен, и в это исторически сформированное содержание понятия революции прочно вошел компонент коренной переделки старого. Поэтому исследователи науки, в последние десятилетия, имея дело с событиями прошлого как не утратившими для нас своего значения в качестве событий уникальных, неповторимых, не стертых со страниц истории последующими событиями, или имея дело с современными теориями, сосуществующими, несмотря на различный характер объяснения ими действительности, в значительной степени избегают инстинктивно использования понятия научной революции.

Появляются другие понятия, ранее существовавшие на периферии философских и исторических исследований науки, такие как уникальность, событие, самодетерминация, выбор, диалогичность, субъектность научного знания и т.п.

Понятие научной революции, как оказалось, было наиболее эффективным, когда оно работало в паре с такими понятиями, как эволюционизм, кумулятивизм, непрерывность, поступательность.
Понятие научной революции, выталкиваемое постоянно из философских, исторических, социологических концепций, незримо присутствовало в них как выражающее основную движущую силу научного прогресса. Как и подобает «силе», она не анализировалась логически, ее природа не выяснялась.

Но вот она была вытащена на свет и ее попытались разложить на части (критическая ситуация, возникновение аномалий, конкуренция старой и новой теорий и т.д.), каждая из которых подверглась изучению, анализу, интерпретации, была испытана на логическую противоречивость и рационалистическую значимость. И стало ясно, что понятие научной революции сработало в направлении упразднения исходных предпосылок концепций развития науки, в которых как нечто само собой разумеющееся предполагалась неизбежность разрушения старого знания в ходе научной революции, замени его новым и на его базе перестройки всей прошлой истории.

Как только исследователи взглянули на понятие научной революции как на некоторую проблему, требующую решения, это понятие трансформировалось таким образом, что лишилось одной из своих основных характеристик — функции разрушения, и на этом прекратило свое существование в прежнем качестве.

3. «КЕЙС СТАДИС» КАК МЕТОД ИССЛЕДОВАНИЯ

ОБЩАЯ ХАРАКТЕРИСТИКА КЕЙС СТАДИС

Изменение функции научных революций в историко-научных концепциях сопровождается преобразованием и самих этих концепций. На авансцену выходят кейс стадис (case studies), которые называют ситуационными исследованиями. Это направление начинает выдвигаться на передний план в 70-е годы.

В работах такого рода прежде всего подчеркивается необходимость остановить внимание на отдельном событии из истории науки, которое произошло в определенном месте и в определенное время.

Кейс стадис — это как бы перекресток всех возможных анализов науки, сфокусированный в одной точке с целью обрисовать, реконструировать одно событие из истории науки в его целостности, уникальности и невоспроизводимости.

Процесс индивидуализации изучаемых исторических событий, который начался с выдвижения на передний план в качестве
предмета изучения строя мышления определенной эпохи, радикально трансформирующегося с ходу глобальной научной революции (вспомним А.Койре, его анализ научной революции XVII в.), завершается ситуационными исследованиями, которые являются уже прямым антиподом кумулятивистских, линейных моделей развития науки.

В кейс стадис ставится задача понять прошлое событие не как вписывающееся в единый ряд развития, не как обладающее какими-то общими с другими событиями чертами, а как неповторимое, невоспроизводимое в других условиях.

В исторических работах прежнего типа историк стремился изучить как можно больше фактов с тем, чтобы обнаружить в них нечто общее и на этом основании вывести общие закономерности развития. Теперь историк изучает факт как событие, событие многих особенностей развития науки, сходящихся в одной точке с тем, чтобы отличить ее от других.

— Возникает вопрос, а как же быть с теоретичностью истории?
— Может ли мы говорить о логическом характере исторической реконструкции, если результатом работы историка является реконструкция уникального события?
— Как быть со всеобщностью в истории?
— Можно ли говорить о всеобщем характере исторических исследований такого рода?

Поскольку индивидуальное и особенное всегда воспринималось как нечто противоположное логической общности, то довольно широкое распространение получило мнение об эмпирическом характере кейс стадис.

Это связано еще и с тем, что сами авторы кейс стадис, как правило, слабо рефлектируют по поводу особенностей собственной работы. Кейс стадис получают распространение в какой-то мере стихийно, а не как результат сознательной переориентации историков в области методологии.

Если в общей истории фокусировка внимания на особенном и уникальном имеет место давно и включена в определенного рода теорию истории (вспомним неокантианцев, Шпенглера и А.Тойнби), то для истории науки это достаточно новый поворот исследований. Он трудно поддается методологизации, поскольку именно история научных идей больше, чем история какой бы то
ни было области человеческой жизни, всегда воспринималась как нечто максимально рациональное и упорядоченное.

Это совсем не значит, что кейс стадис — абсолютно новый вид исторической реконструкции в историографии науки. Конечно же, такого рода работы были всегда.

Речь идет о доминировании определенного типа исследований, о выдвижении кейс стадис на передний план.

Точно так же и исследования кумулятивистского толка будут проводиться и вперед, ведь они выражают очень важные черты развития науки, такие, как поступательность, зависимость каждого нового продвижения вперед от предшествующего уровня развития, увеличение объема знаний и т.д.

Просто эти черты исторического процесса постепенно утрачивают свое первостепенное значение, отходят сегодня на задний план в связи с изменениями в типе теоретизирования.

ОЦЕНКИ ИСТОРИКАМИ НАУКИ НОВОГОТИПА ИССЛЕДОВАНИЙ

Чтобы дать представление о том, как сами историки науки понимают этот новый вид исторической реконструкции (в тех случаях, когда они задумываются над методами своей работы), приведем высказывание Р.Телнера, автора статьи «Логические и психологические аспекты открытия циркуляции крови».

Статья представляет собой именно изучение конкретного эпизода из истории науки. Телнер предпринимает попытку объяснить связь кейс стадис с определенной методологией истории науки.

По мнению Р.Телнера, традиционная история описывает путь науки как прямую улицу, где научный разум прогрессирует неуклонно, никуда не отклоняясь, пока он не достигает точки, в которой мы находимся сейчас. «Главное возражение современных историков, — пишет Р.Телнер, — против изображения истории как автострады, обсаженной тополями и бегущей в нашем направлении, состоит в том, что в этом случае собственная точка зрения историка берется как обладающая абсолютной ценностью и предполагается, что его критерии — это стандарт для суждения об истории. Мнение историка является, однако, прежде всего конечной целью любой исторической интерпретации, и соответственно нашепервой предпосылкой правильного взгляда на историю является то, чтобы наши стандарты коррек-
тировались стандартами, которые управляют самой историей. Каждое историческое событие является ценностью само по себе и не может быть сведено к простому случаю в истории».

Научное открытие, как считает Р.Телнер, должно изображаться как историческое событие, в котором смешались идеи, содержание и цели предшествующей науки, а также культурные и социальные условия жизни того времени, когда открытие было сделано.

Только такое изображение, которое принимает во внимание и изучает все это, действительно будет в состоянии дать информацию о специфически новом аспекте научного открытия, может действительно описать, как развивался новый взгляд, каким путем и какими средствами он вошел в историю или, наоборот, не вошел.

Сошлемся также на книгу М.Малкея «Наука и социология знания», которая вышла в русском переводе в 1983 г. Автор основывает многие свои выводы общего характера на собственных кейс стадис, а также подробно разбирает такого рода работы других историков и социологов науки. В контексте именно кейс стадис, по мнению М.Малкея, вырабатываются в настоящее время многие новые представления в области социологии, философии и истории науки.

ИССЛЕДОВАНИЯ Т. ПИНЧА КАК ПРИМЕР БОЛЕЕ РАДИКАЛЬНОГО ПЕРЕХОДА К КЕЙС СТАДИС

В кейс стадис 80-х годов переход к новому типу исследований осуществляется более полный и радикальный: культура, социум, теория, логика не только сосредоточиваются в одном месте и времени, но и отношения между ними перестраиваются.

Посмотрим, как это происходит в работах английского историка и социолога науки Т.Пинча. Статья Т.Пинча, опубликованная в 1985 г. представляет собой развитую форму кейс стадис. Т.Пинч рассматривает два эпизода из истории науки, относящиеся к 1967 г.: определение солнечных нейтрино и измерения сплющенности Солнца.

Пинч пытается определить наиболее характерные признаки именно кейс стадис, которым он придает большое значение в современной социологии и истории науки.

Прежде всего он обращает внимание на конкретный характер этих исследований. Предметом изучения становится непосредственная научная практика, анализируются, например, эпизоды научного диспута или эпизо-
ды жизни отдельных лабораторий, научных коллективов. При этом дается детальное описание «болтов и гаек» научной деятельности. Используется такая методология, как подробное интервьюирование, наблюдение через включение в саму деятельность и этнография.

Недостаток такого рода исследований Т.Пинч видит во фрагментарности результатов: не создается общей целостной картины, отсутствуют способы интеграции полученных находок, трудно бывает уловить, какие же общие положения рождаются на базе проделанной работы.

Автор считает, что кейс стадис надо проводить, исходя из какой-то общей схемы, должен быть разработан понятийный аппарат, пригодный для изучения любого конкретного эпизода.

Т. Пинч в своей статье сосредоточивается на процессе наблюдения в физике. Он делает своей задачей,

во-первых, выявление особенностей процесса наблюдения в условиях современной науки,

во-вторых, рекомендацию некоторых обших методов для анализа аналогичных эпизодов в науке.

Т. Пинч изучает ситуации научного диспута вокруг уже названных выше двух тем: определение солнечных нейтрино и измерение сплющенности Солнца. Его интересуют спор, дискуссии между учеными, в ходе которых решается вопрос о правильности результатов наблюдения. Дискуссия в науке рассматривается Т. Пинчем как социальный процесс, направленный на получение научного результата.
Вопрос, что же в действительности наблюдалось, оказывается двусмысленным, потому что наблюдение преобразуется в изучение цепочки искусственных (замещающих подлинный предмет исследования) явлений.

Совокупность этих явлений образует некоторый контекст обоснования наблюдения, отдельные элементы которого воспринимаются как не вызывающие сомнения, как безусловно истинные или безупречно работающие (если речь идет об экспериментальном оборудовании), как «черные ящики», содержимое которых не требует специального обсуждения и рассмотрения.

Но ведь в какой-то момент истории науки эти «черные ящики» были открытыми ящиками, они создавались, формировались и вокруг них возникали свои споры и дискуссии.

Возвращение к этим спорам и дискуссиям является единственным способом «открыть» «черные ящики» сегодняшнего дня, т.е. это можно сделать только с помощью истории.

И наоборот, то, что сегодня вызывает споры, в будущем может стать «черным ящиком». Т.Пинч считает, что, используя стратегию его статьи, можно заглянуть в «черные ящики» будущего, рассматривая, как они социально конструируются сегодня и здесь, фокусируя внимание на современных спорах и наблюдениях. Очень может быть, пишет Т.Пинч, что солнечно-нейтринные «телескопы» могут стать частью стандартного оборудования, используемого астрономами, в той самой мере, в какой оптические телескопы стандартны сегодня.

(419) Эта идея Т.Пинча о «черных ящиках» интересна в двух отношениях для понимания кейс стадис.

— Во-первых, индивидуальный случай наблюдения можно связать с более широкими интересами и ресурсами других групп ученых, включенных в научную практику.

— Во-вторых, появляется возможность «втянуть» в отдельное событие, локализованное во времени и пространстве, прошлое и будущее этого события.

Короче говоря, предлагается концептуальная основа для придания в некотором смысле всеобщего значения индивидуальному событию, а также новая форма континуальности в истории.
ЭМПИРИЧЕСКОЕ И ТЕОРЕТИЧЕСКОЕ В ИСТОРИЧЕСКИХ ИССЛЕДОВАНИЯХ НОВОГО ТИПА

Особенностью кейс стадис является то, что берутся для изучения локальные, фокусные точки, в которых могут быть обнаружены, в результате определенного анализа, всеобщие характеристики того или иного периода.

Однако на практике, которая до сих пор имела место, исследователю, как правило, очень редко удается выделить эти характеристики, обычно даже задачи такой не ставится. Отсюда не без основания возникает впечатление чрезвычайной фрагментарности исторической картины, создающейся на базе кейс стадис. Изучаются эмпирически отдельные конкретные эпизоды, обладающие лишь частным значением. Неясно, какую роль они сыграли в последовательном развитии научных идей, в подготовке современного состояния научного знания.

В традиционных кумулятивистских историко-научных работах ставилась задача изучения максимально большого эмпирического материала, но там это делалось для того, чтобы затем на базе конкретных фактов вывести некоторые общие закономерности развития науки. Это делалось путем вычленения во всем многообразии фактического материала общих черт, каждый эпизод изучался прежде всего с целью выявления в нем характеристик, делающих его похожим на предыдущие и последующие события.

Но если в кейс стадис мы выявляем в историческом эпизоде такие черты, которые делают его непохожим на другие эпизоды, то можно ли (и в какой степени) говорить о каком бы то ни было «порядке» в истории, о наличии закономерностей?

Даже если средствами кейс стадис будет изучено максимально большое количество исторических событий, то сможем ли мы перейти к обнаружению всеобщности в истории? Ведь каждый эпизод будет нами реконструирован как неповторимый, невоспроизводимый в других условиях.

По-видимому, нельзя не учитывать того обстоятельства, что историческая реконструкция прошлого события как уникального предполагает сложную теоретическую работу по генерализации, по построению целостного, объемного события, в котором синкретически сфокусированы самые разнообразные его стороны.

Такая реконструкция ни в коем случае не может быть подменена фотографированием: как логическая и теоретическая, она ничуть не менее...
сложна, чем работа по обобщению исторических фактов, выявлению в них общих характеристик.

Должна быть поставлена задача выработки принципов, руководствуясь которыми можно было бы выявлять всеобщее в истории через изучение уникальных, особых событий.

Кейс стадис в их сегодняшнем состоянии являются лишь симптомом процесса обращения историков науки к исходным элементарным клеточкам предмета исторического анализа как некоторому средоточию всеобщности. Элементарное событие не приобщается к некоторому всеобщему, находящемуся вне его, а наоборот, это всеобщее обнаруживается в нем самом и через общение с другим особым событием. В теории, в логике истории на передний план выдвигается общение, вместо обобщения.

Такое направление исторического исследования в основном дело будущего, но оно может занять доминирующее положение в историографии науки, если будет решена задача выявления всеобщего в частном, конкретном эпизоде.

(421)

НЕПРЕРЫВНОСТЬ ИСТОРИИ В КЕЙС СТАДИС

В работах Т. Пинча и у ряда других историков новой формации можно наблюдать только попытки, в большинстве случаев слабые, как-то обосновать и реализовать иные, чем прежде, способы установления непрерывности, континуальности в истории.

Эта проблема действительно сложная.

— В случае традиционной историографии науки исторический процесс изображается прямой однородно направленной линией, непрерывность которой обеспечивается каждый раз заново в ходе перестройки прошлого после очередной фундаментальной революции.

— Историческая картина, складывающаяся на базе кейс стадис, представляет собой что-то вроде плоскости с возвышающимися на ней холмами и пиками, изображающими события меньшей и большей значимости.

— Поскольку по ходу истории старые события не вытесняются новыми, как не имеющими значения, история становится многосубъектной, многособытийной. Возникает проблема связи между отдельными событиями, проблема континуальности.

— Прежние логические средства не годятся — нельзя разрушить то, что не подчиняется логике, пусть даже совершенной последней теории.
Разговор надо вести на равных, признавая право оппонента на существование. Между событиями устанавливаются диалогические отношения.

— Аналогичный тип общения устанавливается и между теми конкурирующими теориями, которые сосуществуют во времени.- В исторических и философских работах все чаще подчеркивается момент именно сосуществования разных теорий, парадигм.

Когда историческая реальность изображается как плоскость с возышениями, которые выражают собой отдельные понятия, то общение между ними можно представить в виде соединяющих их линий. Поскольку событий бесконечно много, то и актов-общений тоже бесконечно много, и если все возможные (но совсем не обязательно реализованные) контакты изобразить на нашей схеме линиями, то вся плоскость, представляющая историческую реальность, будет покрыта ими.

Таким образом, если в традиционных исторических концепциях мы имеем исторический процесс в виде сплошной линии, в своем идеале лишенной разрывов и образованной из точек-фактов,

в исторических концепциях типа кейс стадис историческая реальность может быть изображена плоскостью, сплошь покрытой чем-то вроде силовых линий-общений.

Но в случае кейс стадис дискретность приобретает несколько иной смысл, как, впрочем, и непрерывность или континуальность. События должны отстоять друг от друга на некотором расстоянии, чтобы сохранить свою индивидуальность и свою непохожесть на прочие события.

В этом смысле дискретность неизбежна и необходима, но она не обладает абсолютным характером: пространство между отдельными событиями заполнено полем общения, без которого события не могут существовать.

Имеется еще другая сторона проблемы континуальности в исторических исследованиях типа кейс стадис. Контакты между отдельными историческими событиями ни в коем случае не являются внешними взаимодействиями или переходами от одной теории к другой в одном направлении от прошлого к будущему.

Речь идет о возможности при некоторых предельных условиях двустороннего перехода от одной теории к другой и обратно. Именно такой
механизм и имеется в виду при заполнении плоскости, изображающей историческую реальность, силовыми линиями взаимодействия.

Можно говорить и о другом способе взаимодействия. В идеале каждое событие, как воронка (опрокинем наш конус на плоскости вершиной вниз), может втянуть в себя все прошлое и все будущее. В этом смысле тоже можно говорить о преодолении в истории дискретности в смысле всеобщности каждого отдельного события.

Уже из сказанного становится достаточно очевидным, что сами понятия дискретности и непрерывности в условиях кейс стадис трансформируются, и весьма существенно. Прежде всего, дискретность не является объектом преодоления в пользу полной непрерывности.

Если мы в истории, да и в нашей современности имеем дело с событиями уникальными, не похожими друг на друга, то они и пространственно должны отстоять друг от друга, а не образовывать некоторую гомогенную поверхность, подобно тому как

в кумулятивистской истории факты-точки образуют сплошную прямую линию.

Соотношение дискретности и непрерывности мыслится как возможная реализация всех событий, эмпирически в ней присутствующих и бесконечно разнообразно друг с другом сообщающихся, что можно изобразить как заполнение всего пространства-плоскости между ними силовыми линиями воздействия, или же мы ту же историческую действительность представим как возможность ее втягивания в одно-единственное, любое из всех событий. Это событие, как воронка, вовлекает в себя все остальные, все прошлое, настоящее и будущее.

Тем самым предполагается, что все связи этого события с другими, и реализованные в прошлом, и сохранившиеся в виде исторически не реализованной возможности, свернуты в этом событии, как готовая в любой момент распрямиться пружина. И от исследователя зависит выбрать для анализа наиболее важные механизмы взаимодействия, те, которые выражают и особенное своеобразие изучаемого события, и через это своеобразие и всеобщность истории.

Подобно тому как событие фокусирует в себе, как целостное событие, весь мир (движение внутрь события), так и в любом акте взаимодействия с внешним миром событие проявляет себя непременно все целиком, всеми своими свойствами, сфокусированными именно в этом акте взаимодействия (движение вовне).
МЕТОДОЛОГИЧЕСКИЕ ОСОБЕННОСТИ КЕЙС СТАДИС

Обозначим некоторые методологически значимые особенности кейс стадис, опираясь на сказанное об этих исследованиях выше.

— Во-первых, эти исследования сосредоточены не столько на неко-
тором готовом факте, окончательном итоге научного открытия, сколько на самом событии, по возможности целостном и неповторимом.

Такое событие может, на первый взгляд, предстать очень частным и
незначительным, но оно несет в себе некоторые симптомы переломных,
поворотных моментов в истории науки. С другой стороны, такие события,
сознают это сами исследователи или нет, оказываются своеобраз-
ным, легкооображены и точно определяемым перекрестком разных
направлений историко-научного поиска, будь то анализ процесса творче-
ства, социальных условий, соотношения общесоциального и собственно
научного сообщества, структуры научного знания и т.д.

Кейс стадис сочетают в себе,
что очень важно,
синтетичность, универсальность и локальность, точечность, легко-
обозримую предметность анализируемого события.

— Во-вторых, для кейс стадис важно, что в качестве целостного и
уникального берется событие малое по объему: это, как правило, не куль-
тура какого-то длительного периода времени в истории, не культура боль-
шого региона, нет, изучаются события локализованные, такие, как отдель-
ный текст, научный диспут, материалы конференции, научное открытие в
определенном научном коллективе и т.д.

— В-третьих, особое значение для кейс стадис приобретает возмож-
ность охарактеризовать их как некую воронку, в которую втягиваются и
предшествующие события, и последующие, хотя предмет изучения характери-
зует настоящее науки, «теперь», пусть даже это «теперь» и относится
хронологически к прошлым векам (вспомним «черные ящики» Т.Пинча).

Названные выше методологические особенности кейс стадис явля-
ются не столько результатом рефлексии историков науки, сколько необхо-
димыми моментами развития новых форм исторической реконструкции.

ЗАКЛЮЧЕНИЕ

Рассмотренные выше три модели исторического изучения науки от-
личаются друг от друга прежде всего тем или иным пониманием непре-
рывности исторического процесса. В XIX в. и в начале XX в. доминировало убеждение в непрерывном, поступательном характере развития науки. В середине XX в. эта точка зрения уже ставится под вопрос, не воспринимается как нечто само собою разумеющееся: научные парадигмы, теории не могут выводиться непосредственно из предшествующего знания, они несоизмеримы и разделены пропастью научных революций. При этом продолжаются попытки преодолеть эту разорванность истории, тем или иным способом восстановить поступательность и непрерывность исторического процесса. В конце века, когда на авансцену исторических исследований выдвигаются работы типа кейс стадис, где первостепенное значение приобретают такие черты исторических событий, как индивидуальность, особенность, непохожесть их друг на друга, непрерывность и поступательность развития утрачивают свою привлекательность для историков, исторические события должны оставаться отличными друг от друга, отделенными одно от другого, они не могут быть выстроены в единый ряд путем обобщения, они могут объединяться лишь путем общения. Сами понятия единства и непрерывности истории трансформируются.

(425)

(426)
РАЗДЕЛ IV

(427)
(428)
Глава XVIII.

НАУЧНОЕ СООБЩЕСТВО

Наука возникает, существует и развивается в обществе. Сегодня она представляет собой его важнейший социальный институт.

1. НОРМЫ И ЦЕННОСТИ НАУКИ

Всякий социальный институт — а общество в целом можно охарактеризовать как сеть, или как систему, взаимодействующих социальных институтов — это особая сфера упорядоченных отношений между людьми, устойчивой организации их деятельности.

Такая упорядоченность и организованность достигается путем нормативно-ценностного регулирования межличностных взаимодействий. С точки зрения своего внутреннего устройства социальный институт выступает как система норм и ценностей.

Поэтому людям, вступающим в контакт в рамках социального института, нет надобности вскользь раз договариваться о том, на каких условиях они будут взаимодействовать между собой и чего им следует ожидать друг от друга.

Нормы, характерные для социального института медицины, предопределяют и естественность такого предложения врача, и вашу реакцию на эту просьбу.

Таким образом, нормы очерчивают круг допустимого, возможного, приемлемость поведения в рамках данного социального института.

(429)
жения стремится как можно скорее достичь места назначения, а с другой — должна обеспечиваться и безопасность участников движения.

Стоит отметить, что очень часто нормы, а тем более ценности социального института не получают письменного оформления и закрепления. Обычно они не бывают такими жесткими, как правила дорожного движения, а в случае непосредственно интересующего нас здесь социального института науки само их выявление представляет собой очень непростую проблему.

Каким же образом реально действуют нормы, в частности — нормы исписанные?

Согласно Т. Парсонсу, одному из классиков социологии XX в., это достигается прежде всего за счет того, что в культуре данного общества приняты и укоренены нормативные ожидания, определяющие, что именно надлежит делать в тех или иных обстоятельствах людям, занимающим те или иные позиции. На индивидуальном уровне эта упорядоченная система ценностей и норм реализуется благодаря организованности мотивов, которые побуждают человека действовать так, как это предписывается нормативными ожиданиями.

Каждый социальный институт располагает механизмами внешнего контроля за поведением и действиями людей. Это — обширный набор позитивных и негативных санкций, которыми поощряется ожидаемое и наказывается отклоняющееся поведение.

Негативной санкцией предстает, например, штраф или лишение водительских прав того, кто нарушает нормы дорожного движения.

Если же говорить о социальном институте науки, то здесь главной позитивной санкцией является признание коллег — как современников, так и особенно ученых последующих поколений. Это признание может выражаться в разных формах — от цитирования в научной статье до увековечения престижной научной премией — например, Нобелевской, — и даже до увековечения имени ученого в названии закона или теории: закон механики Ньютона, периодическая система элементов Менделеева, теория относительности Эйнштейна и т.п.

Напротив, того, кто допускает отклонение от принятых в науке норм (фальсификация результатов эксперимента, приписывание себе чужих достижений, плагиат — воспроизведение того, что сделано другими, без ссылки на них), ожидают негативные санкции вплоть до самых жестких — игнорирования всеми коллегами того, что делает данный ученый. Ведь ес-
ли в научной литературе нет упоминаний — цитат или ссылок на его работы, то это значит, что для науки его попросту не существует.

Здесь, впрочем, необходимы некоторые уточнения и пояснения. Очень часто бывает так, что полученный ученым результат не цитируется его коллегами не из-за тех нарушений, о которых только что говорилось, а из-за того, что он представляется им тривиальным, не несущим ничего нового. При более пристальном рассмотрении, однако, обнаруживается, что и в этом случае имеет место нарушение нормы, а именно, нормы, предписывающей ученому создание не просто знания, а нового знания. В соответствии с этой нормой простое воспроизведение того, что уже было сделано другими, не считается научным результатом.

Бывает и иное. Подчас коллеги-современники данного ученого бывают не в состоянии по достоинству оценить результат его исследований как раз из-за его чрезвычайной новизны, оригинальности, из-за того, что он резко расходится с устоявшимися в науке воззрениями. Таким образом, этот результат на долгое время оседает в архивах науки.

Один из наиболее известных примеров здесь — творчество биолога Г.Мендела. В 1866 г. он опубликовал свои «Опыты над растительными гибридами», в которых были впервые сформулированы законы наследования. Однако в научный оборот эти законы вошли лишь после того, как спустя три с половиной десятилетия их переоткрыли К.Корренс, Э.Чермак и Х. де Фриз.

О чем же говорит этот и другие подобные ему примеры?

О том, что существующие в науке механизмы нормативного контроля не всегда срабатывают со стопроцентной эффективностью.

— С одной стороны, коллеги-современники подчас не обладают достаточной компетенцией для того, чтобы правильно оценить новый революционный результат;

— с другой стороны, признание, пусть временное, иногда получают не имеющие должного обоснования и не заслуживающие того идеи.

Но таковых, увы, удел всех нормативных систем, которыми пользуются люди.

Речь у нас пока что шла о внешнем по отношению к личности нормативном контроле. Он, однако, не исчерпывает собой всех способов и механизмов реализации норм.
Наряду с ним существует и внутренний контроль: нормативные ожидания при этом становятся достоянием личности, они, что называется, интериоризуются, превращаясь в мотивы действия определяемого не извне, не страхом наказания или стремлением к вознаграждению, а побуждением и желанием, идущим изнутри личности.

Именно такая интериоризация норм и ценностей науки и является стимулом, поддерживающим тех, кто развивает свои новые научные идеи, не получая признания со стороны коллег и даже наталкиваясь на их противодействие.

2. НАУКА И ЦЕННОСТИ ОБЩЕСТВА

От других социальных институтов науку отличает то, что это — институт по историческим меркам молодой, еще, видимо, не завершивший процесс своего окончательного оформления.

Зарождение социального института науки принято относить к XVI—XVII вв., а в географическом отношении к региону Западной Европы, прежде всего — к Италии, Англии, Франции. Этот процесс институционализации науки включает в себя две стороны.

— Во-первых, формируется социальный институт науки со специфической схемой ценностей и норм.

(432)

— Во-вторых, устанавливается соответствие между этой системой и нормативно-ценностной системой, характерной для общества в целом, для всей той сети социальных институтов, в которую теперь встраивается новый институт.

Соответствие это, как показывает исторический опыт, никогда не бывает полным, так что отношения между наукой и обществом всегда более или менее напряжены. Это может выражаться в том, например, что господствующие в обществе ценности не позволяют развивать некоторые направления исследований, осуществимые с точки зрения имеющихся у ученых возможностей, знаний, средств и методов.

Довольно долго, к примеру, ценности общества препятствовали использованию такого важного средства изучения анатомии человека, как вскрытие трупов. Лишь А.Везалий в XVI в. стал первым проводить вскрытия. Интересно, что два столетия спустя, как пишет Ф. Арье, вскрытие трупов превратилось уже в модное занятие: «В XVIII в. слышалось немало жалоб на то, что молодым хирургам не удавалось найти для своих штудий достаточного количества мертвых тел — из-за конкуренции со стороны
лиц, производивших частные вскрытия, не имевшие отношения к профес-
sиональной подготовке врачей... Многие семьи использовали трупы своих
умерших для собственного просвещения или для удовлетворения любо-
пытства».

Не может, конечно, сколько-нибудь продолжительно сохраняться и
tакое положение дел, когда ценности и нормы науки открыто и неприми-
римо противостоят ценностям и нормам общества. Социальный институ-
т науки попросту не сформируется и не сможет существовать в таком обще-
стве, фундаментальные ценности которого несовместимы со специфиче-
скими ценностями науки.

Вообще говоря, взаимоотношения между обществом и социальным
институтом науки, коль скоро он в этом обществе сформировался, можно
представить как взаимообмен. Наука получает поддержку со стороны об-
щества, в свою очередь, давая общество то, что общество считает важным,
полезным и даже необходимым.

Общественная поддержка науки осуществляется в разных формах,
posредством чего наука получает ресурсы, необходимые для своего вос-
производства и развития:

— ресурсы финансовые, которые общество — в лице ли государства,
промышленных корпораций или частных фондов — готово выделять для
научных исследований;

— ресурсы материальные (земля, здания, оборудование, материалы,
энергия), необходимые для осуществления научной деятельности.

— ресурсы интеллектуальные — научная деятельность может устой-
чиво воспроизводиться лишь в том случае, если общество в состоянии
обеспечить приток в науку все новых и новых поколений молодежи, при-
чем молодежи, уровень способностей и подготовки которой существенно
выше среднего.

Впрочем, такое пополнение науки может осуществляться не только
за счет молодежи. Например, в США, где престиж ученого в целом ниже,
чем престиж предпринимателя, юриста или врача, наиболее талантливая
молодежь стремится попасть именно в эти сферы деятельности. Американ-
ское общество, однако, достаточно богато, чтобы компенсировать это,
привлекая научные умы из более бедных стран. Такова подоплека явления,
известного как «утечка мозгов»).

Существует, наконец, и еще один ресурс, который в отличие от всех
перечисленных, не поддается, быть может, четкому определению и изме-
рению, но является, тем не менее, ключевым. Этот ресурс, невыразимый материально, не ощутимый непосредственно, можно назвать символическим, хотя его значение для науки отнюдь нельзя считать символическим.

Речь идет об общественном статусе, о престиже науки, о необходимости существования в обществе минимального уровня согласия по поводу того, что занятие наукой — это дело небесполезное. Иначе говоря, общество должно видеть ценность науки как таковой, а не просто как источника каких-то конкретных социальных благ. Формирование такого отношения к науке есть один из решающих моментов процесса институционализации науки.

А что же общество получает от науки?

Прежде всего, разумеется, знания, специфическим для науки образом проверенные и обоснованные. Эти знания, в свою очередь, могут быть использованы самыми разными способами.

— Они, как, например, знания о строении вещества, эволюции Вселенной, возникновении и развитии жизни на Земле, о происхождении человека, участвуют в формировании культуры и мировоззрения людей.

— Они порождают новые промышленные, сельскохозяйственные, медицинские технологии, новые источники сырья и энергии, средства связи и транспорт, даже новые сферы человеческой деятельности. На них общество опирается и при решении многих возникающих перед ним социальных проблем.

— Особый вид знаний, вырабатываемых наукой и передаваемых ею обществу, — это знания о путях и методах эффективного использования научных знаний в практических целях. Ведь сам по себе новый научный результат, пусть даже самый перспективный в практическом отношении, не больше чем полуфабрикат, доработка которого также требует, как правило, квалификации научных работников.

— Кроме того, ученые, занимаюсь преподаванием, не только обеспечивают процесс воспроизведения науки, но и формируют интеллектуальный потенциал общества в целом, необходимый для самых разных сфер деятельности в современном обществе.

— И, наконец, еще важный вид продукта, получаемого обществом от науки — это использование квалификации и опыта ученых, когда они выступают в роли экспертов при подготовке и реализации различных социальных, экономических, культурных, политических и т.п. программ, вообще при подготовке управленческих решений.
Все эти взаимообмены жизненно важны для существования науки, поскольку благодаря им она получает необходимые ресурсы. Вместе с тем и для современного общества, коль скоро оно хочет быть и оставаться со временным, поддержка социального института науки столь же жизненно необходима. Очень многое в этом обществе — и культура, и мировоззрение, и производственная деятельность человека, и его повседневная жизнь — существенным образом зависит от науки.

В конце 60-х годов многие страны Западной Европы и США были потрясены волной молодежных, прежде всего студенческих движений протеста. Протест был направлен против многих существующих социальных институтов и преобладающих ценностей западного образа жизни, против господствующих форм культуры. Одной из мишений наиболее агрессивных атак оказалась и наука. В ней как в социальном институте, наиболее рельефно выражающем многие из этих ценностей, идеологии и лидеры движений протеста видели антигуманную силу, подавляющую человека и укрепляющую господство тех экономических и политических кругов, которые руководствуются лишь своими эгоистическими интересами, но навязывают свою волну всему обществу. Особенно резкому осуждению подвергалась милицаризация науки и вызываемая научно-техническим прогрессом деградация окружающей среды. Эти выступления студентов серьезно подорвали социальный престиж науки, и очень скоро дефицит его символического ресурса выразился в резком снижении финансового обеспечения науки, что вызвало безработицу среди ученых, особенно заметную в США. Через некоторое время, институту науки удалось убедительно продемонстрировать, что наука необходима для удовлетворения жизненных потребностей общества, так что ее финансирование быстро превзошло предыдущий уровень. Для этого, однако, пришлось существенно изменить приоритеты научных исследований: финансовый дождь пролился прежде всего на те области знания, которые дают непосредственные практические результаты.

В настоящее время в чем-то аналогичный кризис доверия к науке переживает российское общество. И здесь наука в значительной мере утратила тот символический ресурс, которым она располагала прежде. В прошлые десятилетия государство подмяло под себя общество, присвоив себе в том числе право определять и выражать интересы и ценности общества; в силу этого и поддержка науки на самом деле была не столько общественной, сколько государственной.
Теперь же, когда общество стало много более независимым от государства, утверждение социального престижа науки становится для российских ученых новой и далеко не простой задачей, которую придется решать постоянно. И во многом от того, насколько они преуспеют в ее решении, насколько смогут дать понять обществу, что развитие науки необходимо для удовлетворения потребностей самого общества, будут зависеть и размеры всех других ресурсов, которые общество согласится выделять для поддержки науки.

3. НОРМАТИВНО-ЦЕННОСТНАЯ СИСТЕМА НАУЧНОГО СООБЩЕСТВА

По мере исторического развития и общества, и науки ее участие в удовлетворении запросов, нужд и потребностей общества становится все более широким и многообразным. Общество, вкладывая в науку значительную долю своих разнообразных — правда, всегда ограниченных — ресурсов, заинтересовано, естественно, в том, чтобы эти вложения давали максимальную отдачу.

Однако наука не может все имеющиеся в ее распоряжении ресурсы тратить на удовлетворение только тех запросов, которые приходят извне. Часть этих ресурсов всегда будет расходоваться на поддержание ее собственного существования, на воспроизводство ее самой как социального института.

Понятно, что нормативно-ценностная структура этого социального института существует не сама по себе, не в безвоздушном пространстве. Она воспроизводится, изменяясь, порой весьма существенно, лишь постольку, поскольку есть те, кто разделяет ее ценности и руководствуется ее нормами. Все эти люди, которых принято называть учеными или, более приземленно, научными работниками, образуют научное сообщество.

Члены научного сообщества — это те, кто занимаются научной деятельностью в ее различных формах, о которых уже говорилось. Каждый из них не только проводит научные исследования, но и оценивает результаты своих коллег, готовит, выступая в качестве преподавателя, пополнение для научного сообщества, действуя в роли консультанта, эксперта и пр.

В самом широком смысле научное сообщество включает всех ученых не только настоящего времени, но и предшествующих поколений, по скольку их объединяют идеалы и ценности науки.
Важно отметить при этом, что воспроизводство научного сообщества, т.е. подготовка новых поколений ученых, — это не только передача новичкам определенной суммы знаний и умений, но и усвоение ими идеалов и ценностей науки, того, что называют этосом науки. (Под словом «этос» понимается устойчивый и специфический дух, характер, настрой личности, социальной группы, народа, вообще социальной общности).

Возможны, вообще говоря, два способа передачи новичкам и усвоения ими принципов нормативно-ценностной системы.

— Первый — формальный — характеризуется тем, что идеалы и ценности зафиксированы в виде некоторого устного или письменного кодекса. Удостоверив свою приверженность основополагающим идеалам и ценностям, новичок получает право самостоятельно заниматься соответствующим видом деятельности.

Характерный пример здесь — клятва или присяга врача, которую должен дать каждый выпускник медицинского института, чтобы получить право заниматься профессиональной деятельностью. В этой присяге зафиксированы основные этические требования, которыми ему надлежит руководствоваться в своих действиях и взаимоотношениях с пациентами и с коллегами.

— Второй же способ не предполагает такого формально выраженного кодекса. В этом случае ключевую роль играет неформальное личностное общение учителя и ученика-новичка, в ходе которого первый сам по себе демонстрирует образцы следования ценностям и нормам научного сообщества, непосредственно усваиваемые вторым.

Сходную роль играет и обращение в процессе преподавания к конкретным эпизодам из истории науки, повествующим об образцах поведения признанных лидеров научного сообщества в критических ситуациях. Такие освященные традицией образцы выступают как примеры для подражания, помогающие определять достойную линию собственного поведения.

Следует только иметь в виду, что сам выбор этих исторических образцов во многом определяется не столько историей науки самой по себе, сколько существующими в данное время приоритетами исторически изменяющейся нормативно-ценностной системы науки.

В научной среде широко известны два высказывания И.Ньютона. В одном из них Ньютон говорит о том, что все его
научные достижения были сделаны благодаря тому, что он стоял на плечах гигантов — своих предшественников.

Здесь зафиксирована одна из важных норм этоса науки — необходимость с должным уважением относиться к творцам науки прошлого и опираться в своей деятельности на полученные ими результаты.

В общем и целом, эта норма сохраняется в науке и по сей день. Другое известное высказывание И.Ньютона гласит: «Гипотез не измышляю».

В нем также зафиксирована норма научной деятельности, требующая руководствоваться не спекулятивными умозрениями, а достоверными фактами. И многие поколения ученых, стремясь неукоснительно следовать этой норме, собирали проверенные факты и лишь на этой основе делали свои выводы.

Однако в XX столетии авторитет данной нормы был поставлен под сомнение. Популярным среди ученых стало высказывание другого лидера научного сообщества — Н.Бора, о том, что для прогресса физики необходимы сумасшедшие, т.е. неожиданные, смелые идеи, позволяющие новому осмыслить и связать имеющиеся в распоряжении ученых факты. Иными словами, «измышление гипотез», конечно же оригинальных, было реабилитировано, что, впрочем, не отменило необходимости искать их фактического подтверждения.

В целом же нормативно-ценностная система есть то, что объединяет отдельных ученых в научное сообщество, консолидирует их. Ясно поэтому, что значительная часть усилий научного сообщества, и прежде всего его лидеров, направляется на поддержание системы.

Важно иметь в виду, что научная деятельность носит конкурентный характер.

В силу этого и механизмы самоорганизации научного сообщества в некоторых существенных моментах напоминают механизмы рынка с той, однако, принципиальной разницей, что роль капитала в науке выполняет уже упоминавшееся нами признание коллег.

Такая форма капитала, конечно, не поддается столь простому исчислению, как деньги, но, подобно количеству денег в экономической системе страны, «общий объем признания», если можно так выразиться ограничен, что и порождает конкуренцию среди ученых.
В последние десятилетия найдена и форма его исчисления, пусть не всегда справедливая и часто критикуемая, но доказавшая, тем не менее, свою эффективность.

«Валютной единицей» признания является цитирование статьи учёного (или группы учёных) A в статье учёного (или группы учёных) B.

Чем больше таких единиц получает A, тем выше уровень его признания.

Впрочем, уровень признания может измеряться и по количеству цитирования не только данного учёного (группы учёных), но и данной статьи.

Этот символический капитал материализуется в разных формах, но прежде всего — в форме доступа к источникам финансирования исследований.

Основной вид финансирования в современной науке гранты, выделяемые на конкурсной основе.

И вообще говоря, чем чаще цитируются исследования данного учёного, т.е. чем выше его рейтинг в науке, тем больше вероятность того, что его заявка выиграет конкурс, а он получит финансирование.

Такой механизм составления и оценки заявок обеспечивает согласование интересов общества, с одной стороны, и науки — с другой.

Совокупность фондов — государственных, общественных, частных, — осуществляющих финансирование исследований, отражает (конечно, всегда с большими или меньшими искажениями) интересы общества.

Постольку же, в инстанциях оценивающих заявки, обычно бывают широко представлены ведущие исследователи из различных областей научного знания, в их оценках находят отражение не только квалификация или научный рейтинг автора заявки, но и их представление о наиболее перспективных научных направлениях и проблемах.

Как бы то ни было, нормативно-ценностная система научного сообщества не только допускает, но и стимулирует конкуренцию между учёными, обеспечивая тем самым прогресс научного познания. Вместе с тем эта система устанавливает и правила честной конкурентной борьбы, обеспечивая консолидацию научного сообщества.

Конкурируя с коллегами в борьбе за признание, каждый учёный реализует свой индивидуальный интерес. Этот интерес, однако, он может председовать лишь в рамках научного сообщества, постольку, поскольку
обеспечивается существование и воспроизводство сообщества. А это по-
bуждает ученого относиться с уважением к коллегам, признавать вклад в
науку каждого из них и поддерживать климат взаимного доверия.

4. УЧЕНЫЙ И НАУЧНОЕ СООБЩЕСТВО

Отметим теперь, что в научном сообществе, о котором до сих пор
шла речь, можно выделять различные его уровни.

Главные из них:
— национальное научное сообщество, существующее и действующее
в пределах того или иного государства,
— и дисциплинарное научное сообщество, ограниченное рамками
соответствующей области знания.

Каждое из них имеет своих признанных лидеров и свою нормативно-
ценностную систему, которая включает основное содержание всеобщей
нормативно-ценностной системы, но вместе с тем обладает и собственны-
ми специфическими чертами.

Считается, например, что в английской науке особенно сильны традиции
эмпиризма. Особая приверженность этой норме может выражаться в
том, что при прочих равных условиях английский научный журнал будет
менее склонен, чем, скажем, журнал немецкий, публиковать сугубо теоре-
tическую статью.

(441)

Национальное научное сообщество при выборе перспективных
направлений научных исследований будет руководствоваться не только
интересами мировой науки, но и тем, какие из них потенциально легче
осуществимы в своей стране и более важны для нее, а в определенной мере —
и специфическими научными интересами своих лидеров, которые по-
тому и признаны лидерами, что уже продемонстрировали способность по-
лучать весомые научные результаты.

Национальное сообщество ученых реализует не только ценностности и
нормы науки в целом, но и те ценностности, которые являются господству-
юшими в данной стране.

Дисциплинарное научное сообщество, вообще говоря, не замыкается
в государственных границах, а носит интернациональный характер. Дис-
циплинарные сообщества могут быть более или менее широкими.

Можно говорить, например, о сообществе биологов, или о сообще-
стве тех биологов, которые изучают, скажем, физиологию растений.
Иногда объединяющим фактором может быть исследовательский метод, применяемый в разных областях знания.

Так, в середине нашего столетия, когда возник метод структурного кристаллографического анализа, на почве его совершенствования и использования сформировалось научное сообщество, включающее физиков, химиков и биологов разных специальностей.

Всякое дисциплинарное сообщество характеризуется не только придерживанием всех его членов к ценностям и методам науки как таковой, но и особым видением проблем, стоящих перед данной отраслью знания, перспективных направлений исследований наиболее эффективных путей и средств решения научных задач.

Каждый ученый, как мы видим, является членом не одного, а нескольких научных сообществ.

И в этом заложен потенциальный источник внутренних напряжений и конфликтов, когда ученому приходится делать нелегкий выбор.

Нередко источником таких напряжений бывает требование быть лояльным одновременно по отношению к ценностям и нормам интернационального сообщества ученых, с одной стороны, и к национальным ценностям и нормам — с другой, когда они вступают в противоречие между собой.

Положение, в котором, оказывается при этом ученый, порой бывает просто трагическим.

В такой ситуации оказались, например, многие физики-ядерщики во время Второй мировой войны, когда реальной стала возможность создать оружие невиданной разрушительной силы.

Сначала всю тяжесть ситуации пришлось испытать физикам, рабо- тавшим в нацистской Германии, а точнее — тем из них, кто, подобно В. Гейзенбергу, понимал, что их профессиональный успех обернется катастрофой для всего человечества, если в руках Гитлера и его приспешников окажется атомная бомба.

В. Гейзенберг, ведущий немецкий физик того времени, даже специально совершил рискованную поездку в Данию для встречи с одним из лидеров мирового сообщества физиков Н. Бором, стремясь донести до него свои тревоги и определить возможный курс согласованных действий. Н. Бор, однако, не пошел на откровенную беседу.
Позднее, уже в конце войны, в положении заложников политики ощутили себя физики из разных стран мира, работавшие в США в рамках Манхэттенского проекта создания атомной бомбы. Несмотря на все усилия, им не удалось предотвратить применение созданного ими оружия для бомбардировки мирных жителей японских городов Хиросима и Нагасаки.

Трагической была судьба и выдающегося русского биолога Н. В. Тимофеева-Ресовского, который, при всем своем стремлении быть в стороне от политики, в 30-е годы оказался перед выбором — либо, подчиняясь требованиям советских властей, вернуться из Германии в СССР, где его, скорее всего, ждала тюрьма или даже расстрел, либо, руководствуясь ценностями науки, остаться в Германии, где у него была возможность вести чрезвычайно перспективные генетические исследования в созданной им лаборатории.

Ученый выбрал второй путь, и в последующем ему удалось очень многое сделать и на благо мировой науки, и в интересах своей родной страны. До сих пор, однако, и в научной литературе, и в публицистике идут острые споры, в которых оппоненты оправдывают либо осуждают сделанный им выбор.

5. АВТОНОМИЯ НАУКИ

Все то, что было сказано о научном сообществе, позволяет охарактеризовать его как такую форму организации совместной деятельности ученых, которая позволяет каждому из них преследовать свои интересы таким образом, чтобы не вступать при этом в неразрешимые конфликты с интересами коллег. А постольку, поскольку регулирующие эти взаимоотношения ценности и нормы не навязываются ученым извне, а вырабатываются и поддерживаются самими же учеными, есть все основания говорить о научном сообществе и как о форме самоорганизации ученых.

Ценностно-нормативная система выполняет при этом двоякую функцию.

— Во-первых, она обеспечивает согласование мотивов, интересов и целей всех тех, кто входит в научное сообщество.

Это — функция интеграции сообщества.

— Во вторых, она позволяет сообществу выступать в качестве единого целого во взаимодействиях социального института науки с другими национальными институтами, с государством и обществом.
Осуществление этой функции необходимо для того, чтобы наука могла получать от общества потребные ей материальные символические ресурсы. Конечно, внутри науки распределение этих ресурсов порождает немалые социальные проблемы, поскольку каждое дисциплинарное сообщество, отстаивая собственные интересы, естественным образом стремится получить большую долю ресурсов. Однако перед внешним окружением, каковым для науки является общество, научное сообщество должно выступать как интегрированное целое, демонстрируя не только те практические важные эффекты, которые могут дать отдельные сферы науки, но и ценность науки как таковой. А это, в свою очередь, зависит от того, насколько сплоченным является научное сообщество в целом и в какой мере оно способно осознавать, выражать и защищать свои специфические интересы.

Иначе говоря, речь идет о том, насколько автономно научное сообщество. Автономным следует считать такое сообщество, которое,

— во-первых, в состоянии самостоятельно формулировать и поддерживать собственные нормы и ценности;

— во-вторых, само определять направления, тематику и проблематику своей деятельности.

Наличие автономного научного сообщества — это важнейший показатель того, что в данном обществе в основных чертах оформился институт науки.

Из сказанного в этой главе следует, что социальная роль ученого двойственна. Она предполагает

— как стремление отстоять и упрочить автономию науки,

— так и одновременно с этим необходимость создания того, что требуется обществу в данный момент.

Столь же двойствен, в свою очередь, и интерес общества к науке. Оно, конечно, ждет от науки удовлетворения, и притом как можно более быстрого, своих самых разнообразных запросов. Отсюда рождается побуждение диктовать ученым, нимало не считаясь с их автономией, какими именно проблемами им надлежит заниматься. Наряду с этим поверхностным интересом, впрочем, общество имеет и более глубокий, хотя и менее отчетливо осознаваемый долговременный интерес в поддержании существования науки, в частности, как того, что может дать богатые и необходимые плоды не сегодня, а в более отдаленной перспективе.
Эта двойственность напоминает позицию крестьянина из сказки, у которого была курица, несущая золотые яйца Обществу, как и ему, все время приходится выбирать: удовлетвориться ли пусть относительно невольшим, но стабильным эффектом, либо попробовать получить все сразу.

Как бы то ни было, эта двойственность позиций и ожиданий обеих сторон вносит в соотношение науки и общества постоянную проблематичность. Более или менее проблематичным всегда является решение о том, какой из сторон принадлежит приоритет в формулировании запросов общества к науке, как и определение того, что именно и как должны делать ученые для удовлетворения этих запросов.

Следовательно, автономия науки не достигается раз и навсегда; для ее поддержания и укрепления требуются специальные действия научного сообщества и его лидеров.

Здесь, однако, необходимо иметь в виду следующее. До сих пор мы говорили об обществе и его взаимоотношениях с наукой как о чем-то целостном, имеющем единые интересы.

Это, конечно, идеализация, поскольку реальное общество включает различные социальные слои, группы, классы, интересы которых в чем-то сходятся, но нередко и расходятся вплоть до того, что интересы одних могут резко противоречить интересам других. Различные группы далее могут занимать разные позиции как в ценностном отношении к науке, так и в возможностях воздействовать на научное сообщество. Отнюдь не исключены, и такие ситуации, когда, скажем, каждая из противоборствующих социальных сил стремится заручиться поддержкой научного сообщества для обеспечения своих собственных интересов, а то и подчинить его себе.

В сегодняшней России, к примеру, и сторонники и противники атомной энергии в равной мере склонны опираться на авторитет науки.

С такими притязаниями, впрочем, ученым приходилось сталкиваться еще тогда, когда социальный институт науки только формировался. В Англии XVII в., которую в то время сотрясали религиозно-политические конфликты и гражданская война, лидеры британского научного сообщества Р.Бойль, Р.Гук и их коллеги стояли перед непростым выбором, и найденный ими выход оказался весьма оригинальным: они предпочли держаться в стороне от противоборствующих группировок, не вмешиваться в политическую борьбу.

Это, по сути дела, был выбор в пользу автономии науки.
Первой независимой организацией, объединявшей ученых естественников, стало Лондонское королевское общество, открывшееся в 1662 г.

Устав Королевского общества, ставший его основным документом, был подготовлен Р. Бойлем.

В нем было такое положение:

целью общества является «совершенствование знания о естественных предметах и всех полезных искусствах... с помощью экспериментов, не вмешиваясь в Богословие, метафизику, мораль, политику, грамматику, риторику или логику».

Нетрудно понять, что вовлеченность ученых в текущую социально-политическую жизнь общества не позволила бы сохранять единство научного сообщества.

В истории науки и ее взаимоотношений с обществом бывали и бывают эпизоды, когда эта норма ставится под сомнение. Тем не менее во времена формирования социального института науки без нее, видимо, науке не удалось бы отстоять своей автономии.

Принцип невмешательства в богословие, мораль, политику, провозглашенный в уставе Королевского общества, в современной литературе нередко обозначается как принцип ценностной нейтральности, либо иногда — этической нейтральности науки.

Его можно представить себе как своего рода договор:
— мы, ученые, не затрагиваем вопросы религии, этики, политики,
— но и вы, богословы, моралисты, политики не должны вмешиваться в наши дела.

Вопрос о ценностной нейтральности науки еще будет обсуждаться в дальнейшем. Сейчас же отметим, что в данном случае речь идет не о ценностности науки как таковой и не о тех ценностях, которыми руководствуются ученые — ни то, ни другое не ставится здесь под сомнение.

Следует иметь в виду, что, вообще говоря, все суждения можно разбить на два класса:
суждение о фактах и суждение о ценностях.

Рассмотрим два суждения:
«Сегодня идет дождь» и «Мне нравится, когда идет дождь».
Первое суждение — фактическое; в нем утверждается нечто о некоторой ситуации.

Такое суждение можно подвергнуть проверке, которая покажет, является оно истинным или ложным.

Второе же суждение характеризует не объективное положение вещей, а чью-либо субъективную оценку некоторого реального или возможного положения вещей. Конечно, и это суждение может быть истинным или ложным. Ведь я могу в данном случае сказать и неправду. Но проверка его истинности не связана с выяснением объективного положения дел, существующего независимо от меня. Услышав такое суждение, другой человек скорее будет склонен оценивать его не с точки зрения истинности, а с точки зрения своего согласия или несогласия с моей позицией.

Принцип ценностной нейтральности науки утверждает, что наука оперирует фактическими, а не ценностными суждениями. Его формулируют еще и как принцип свободы от ценностных суждений.

Наука, согласно этому принципу, говорит не о том, что прекрасно, а что ложно.

А если воспользоваться знаменитыми словами А.С.Пушкина, этот принцип можно выразить и в такой форме:
«Гений и злодейство совместны».

XIX. ИНСТИТУАЛИЗАЦИЯ НАУКИ В ЦЕННОСТНОМ ИЗМЕРЕНИИ

1. СТАНОВЛЕНИЕ НАУКИ КАК СОЦИАЛЬНОГО ИНСТИТУТА

Социальный институт науки начал складываться в Западной Европе в XVI—XVII столетиях, в период упадка феодализма и зарождения буржуазных общественных отношений и ценностей. При этом влияние науки на социальную жизнь долгое время обнаруживалось прежде всего в сфере мировоззрения — в сфере, где до этого в течение многих веков доминировала религия.

С первых же шагов своей институционализации наука встала в непростые, порой остроконфликтные взаимоотношения с теологией.
— В эпоху средневековья именно теология выступала в качестве верховной инстанции, призванной обсуждать и решать коренные мировоззренческие проблемы, такие, как вопрос о строении мироздания и месте в нем человека, о смысле и высших ценностях жизни и т.п.

— На долю зарождавшейся науки оставались проблемы более частного и «земного» порядка.

В соответствии с концепцией двойственной истины, разработанной в недрах католической схоластики,

— теология занималась наиболее кардинальными и «возвышенными» вопросами,

— тогда как знание о вещах мирских, «низменных», непосредственно окружающих человека, не обладало столь высокой значимостью для нее и вызывало существенно меньший интерес.

(449)

Такое разделение «сфер влияния» оставляло определенные возможности для развития научного знания, хотя всегда сохранялась вероятность того, что наука выйдет за эти рамки.

Как известно, впервые это произошло в связи с созданием гелиоцентрической системы Коперника. Тот факт, что именно она послужила поводом для столь резкого столкновения науки с теологией, не был случайным, поскольку геоцентризм оказался одним из опорных пунктов религиозного учения о мире. Тогда случилось так, что острый конфликт между религией и наукой произошел на почве астрономии, хотя, наверное, он мог произойти и в другой области.

Как бы то ни было, коперниковским переворотом наука впервые заявила о своих претензиях на роль силы, предлагающей собственные решения серьезнейших мировоззренческих вопросов.

Занятия наукой, до тех пор казавшиеся (а в какой-то мере и действительно бывшие) чем-то сродни магии, алхимии или астрологии, являвшейся нередко уделом отшельников-одиночек, вдруг стали вызывать живой общественный интерес.

Здесь, конечно, еще не может быть и речи о сколько-нибудь прочном укоренении науки в обыденном сознании широких слоев населения — мы имеем в виду лишь то, что в глазах образованных людей наука начинает выступать как самостоятельная и самоценная сфера деятельности.

А это, в свою очередь, открыло возможность воспринимать занятия наукой как достойное жизненное поприще для человека.
Признание за научной деятельностью самоценного характера и стало началом социальной институционализации науки.

Не следует, конечно, забывать, что выдвижение теории Коперника и оказавшаяся исторически неудачной попытка церковных кругов воспрепятствовать ее принятию явилась хотя и очень важным, но лишь одним из первых шагов в процессе утверждения ведущих позиций науки в формировании мировоззрения.

Должно было пройти немало времени, вобралого в себя такие драматические события, как отречение Г.Галилея под давлением инквизиции от учения Н.Коперника, острые идеологические конфликты в связи с эволюционным учением Ч.Дарвина и многое другое, прежде чем общественный авторитет науки позволил ей стать ведущей силой в решении первостепенных мировоззренческих вопросов, касающихся структуры материи и эволюции вселенной, возникновения и сущности жизни, происхождения человека и т.д.

Еще больше времени потребовалось для того, чтобы предлагаемые наукой ответы на эти вопросы стали элементами общего образования.

Напомним теперь о позиции Лондонского Королевского общества, провозглашавшего невмешательство науки в вопросы теологии, морали и политики. Она, как видим, не очень-то согласуется с только что сказанным. Суть дела, однако, в том, что за этой позицией стоит одна из попыток научного сообщества сглаживать и регулировать потенциальные напряжения во взаимоотношениях науки с другими социальными институтами, что, впрочем, удавалось далеко не всегда.

Необходимо отметить, что этот конфликт между социальными институтами находил выражение и на индивидуальном уровне, порождая огромные напряжения в духовном мире ученого. Ведь ученые тех времен отнюдь не были атеистами. Напротив, очень часто они были движимы самыми искренним религиозным рвением.

В соответствии с превалировавшей тогда ценностной установкой исследование природы понималось как стремление постичь божественный замысел.

Считалось, что Бог дал людям две книги — Библию, в которой изложено слово Творца, и «Книгу природы».

Человеческое познание природы понималось как естественная теология или, по словам одного из основоположников научной методологии Ф.Бэкона, как изучение всемогущества Бога, знаки которого запечатлены в
Его творениях. Представление о «Книге природы» отнюдь не было только метафорой — им определялось понимание и самой природы, и путей ее познания.

Более того, через такое видение соотношения Бога и мира сама возможность познания природы представлялась гарантированной.

— Будучи творением абсолютного интеллекта, природа, в той мере, в какой человеческий интеллект сопоставим с ним, доступна и человеческому пониманию.

Для представителей натуралистов, познание природы стало бы возможным, если бы она содержала в себе интеллектуальное, разумное начало.

— Она построена в соответствии с планом, замыслом, а потому ее можно и понимать, и познавать.

— Сотворенность природы интеллектом, есть гарантия не просто познаваемости, но и возможности достижения истинного знания, коль скоро человек окажется в состоянии проникнуть в божественный замысел.

— Природа, стало быть, содержит в себе интеллектуальное, разумное начало.

— Природа, стало быть, содержит в себе интеллектуальное, разумное начало.

Вот как рассуждал, например, Р. Бойль.

Он считал, что конструкция великой «машины» Вселенной превосходит конструкцию наиболее хитроумных башенных часов, поскольку каждая изготовленная Творцом машина делается из множества меньших машин, «причем каждая подчиненная машина прекрасно приспособлена для того или иного конкретного использования, чем доказывается, что этот Великий Мастер имел перед глазами весь механизм в целостности и единым взглядом охватывал все, что предстояло сделать, наилучшим образом». Пути познания природы определяются здесь вполне однозначно.

Таким образом, религиозное по своим истокам, рвение стало одним из ценностных импульсов, легших в основание научного познания.

И это же рвение приводило ученого в столкновение с официальной теологией, превращая его в отступника и еретика, нередко совершенно вопреки его собственной воле.

С этой точки зрения институциональное обособление науки от религии и разграничение сфер их компетенции можно охарактеризовать как разумный исторический компромисс.

2. НАУКА И ИДЕОЛОГИЯ ПРОСВЕЩЕНИЯ

По мере того, как утверждалась ценность науки в качестве авторитетной культурно-мировоззренческой силы, в общественном сознании
формировалось новое отношение к ней. Вместе с тем эволюционировало и самосознание научного сообщества,

воображения учёных на смысл и задачи научной деятельности, на ее общественную значимость.

Наиболее отчетливо это выразилось в представлениях, сложившихся в XVIII столетии, в век Просвещения. Если прежде господствовал взгляд на научные знания как на то, что доступно только избранным и открывает им путь к благу, то просветители существенно раздвинули рамки социального воздействия науки.

Видя в невежестве и суевериях основной источник всех пороков и зол в обществе, они считали распространение научных знаний среди широких слоев населения решающим средством достижения социальной справедливости и разумного общественного устройства.

В начале XIX века, в связи с общим разочарованием в итогах Великой Французской революции, идеи Просвещения стали терять свои позиции. Однако укоренившееся на их основе понимание научного знания как самоценно и общественно значимого блага надолго осталось широко разделяемой предпосылкой, исходя из которой обсуждалась socialная роль науки.

Иначе говоря, расширение объема научного знания представлялось целью, не требующей какого-либо внешнего оправдания. В качестве едва ли не бесспорной ценности выступал и принцип свободы научных исследований. Всякое выступление против этих установок воспринималось как голос обскурантизма.

Нередко дело доходило до абсолютизации культурно-мировоззренческих возможностей науки.

Утверждалось, в частности, что только научное, а точнее — только естественнонаучное знание может служить надёжным ориентиром в человеческой деятельности. Тем самым принижалась или вообще отрицалась мировоззренческая значимость религии, философии, искусства.

Впоследствии на этой почве возник сциентизм — мировоззренческая позиция, считающая науку высшей формой культуры, своего рода сверхценностью, и третирующая все, что выходит за рамки научной строгости и рациональности.

С течением времени культурно-мировоззренческая роль науки становится все более заметной, и сегодня она весьма и весьма внушительна.
Вместе с тем сегодня с предельной ясностью обозначилась и ущербность односторонней ориентации на науку в мировоззренческом плане, необходимость единства науки с другими формами культуры, хотя реальное достижение такого единства — далеко не простая задача.

Важно также иметь в виду и то, что в современных условиях осуществление культурно-мировоззренческой функции — лишь один из каналов воздействия науки на общество.

Поэтому ориентация исключительно на эту функцию ведет к односторонности в понимании их взаимоотношений.

3. НАУКА, ТЕХНИКА, ПРОИЗВОДСТВО

Следующий ключевой этап социальной институционализации науки приходится на вторую половину XIX — начало XX в.

Принципиальное значение здесь имеют два момента:
— осознание и обществом, и научным сообществом экономической эффективности научных исследований;
— начавшаяся в этот же период профессионализация научной деятельности.

Экономическая эффективность науки стала обнаруживать себя благодаря тому, что результаты исследований начали широко применяться для совершенствования существующих и создания новых технологий в промышленном и сельскохозяйственном производстве, средств связи и транспорта, видов оружия
— одним словом, новых средств человеческой деятельности.

При этом в корне меняется само понятие о результативности научных исследований.

— Прежде в качестве законченного результата мыслилась главным образом теория, описывающая и объясняющая некоторый круг явлений. Для достижения этой цели ученые создавали новые средства — будь то математический аппарат, физический прибор или устройство, позволяющее наблюдать стадии каких-либо химических превращений.

— Теперь же все чаще осознается, что многие из этих средств можно использовать не только в научной лаборатории, но и, скажем, в промышленном производстве для получения новых материалов, новых продуктов и пр.
Создание такого средства, а не только законченной теории, выступает как самостоятельный научный результат. Его могут оценить и признать не одни лишь коллега по научному сообществу, но и предприниматели, и все те, кто связан с техникой и производством. А это, в свою очередь, не могло не сказаться и на системе ценностей и приоритетов научного сообщества.

В наше время такая роль науки представляется первой, изначальной, а ее тесные связи с миром средств человеческой деятельности, с техникой и технологией воспринимаются как нечто самоочевидное. И это понятно, если учитывать беспрецедентные масштабы и темпы современного научно-технического прогресса, результаты которого столь зримо проявляются во всех областях жизни общества и во всех сферах деятельности человека.

Однако при историческом рассмотрении картина предстает в ином свете.

Ведь еще в середине прошлого века синтез науки, техники и производства был не столько реальностью, сколько перспективой.

В период становления науки как социального института вызревали предпосылки такого синтеза, создавался необходимый для этого интеллектуальный климат, вырабатывался соответствующий строй и настрой мышления.

Теоретическая наука Нового времени, и прежде всего теоретическое естествознание, сосуществовала с «мирской наукой» — сводами эмпирических правил, рецептами технической деятельности, канонов и образцов ремесленного мастерства.

Конечно, научное знание и тогда не было изолировано от техники, но связь между ними была однородной. Некоторые проблемы, возникающие в ходе развития техники, становились предметом научного исследования и даже давали начало целым научным дисциплинам. Так было, например, с гидравликой, с термодинамикой и др. Лондонское Королевское общество особенно стимулировало изучение таких проблем.

Сама же наука мало что давала практической деятельности — технике, медицине, сельскому хозяйству. И барьера этому существовали не только со стороны науки, но и со стороны практики, которая не умела, да и не испытывала потребности опираться на достижения науки или просто
систематически учитывать их. В этой связи можно привести следующий пример.

Еще в начале XVII века У. Гарвей открыл законы кровообращения. Его теория со временем получила всеобщее признание, и ее изучали многие поколения студентов-медиков. Однако еще в начале XIX века те же студенты, становясь практикующими врачами, в качестве одного из основных средств лечения использовали кровопускание, хотя с точки зрения гарвейского учения столь широкое применение этой процедуры выглядит по меньшей мере бесполезным. В общем и целом до середины XIX века случаи, когда результаты науки находили практическое применение, были эпизодическими. Они не вели ко всеобщему осознанию и рациональному использованию тех огромных потенциальных возможностей, которые таило практическое использование результатов научных исследований.

Творцы технических новшеств, заложивших основу промышленной революции XVIII — начала XIX в., не были связаны с научным сообществом.

Ни цирюльник Р. Аркрайт (прядильная машина), ни кузнец Т. Ньюкомен (тепловой двигатель), ни шахтер Дж. Стефенсон (паровоз), ни лаборант Дж. Уатт (паровая машина, регулятор) не относили себя к ученным.

А между тем и тогда, и много раньше не один из великих умов говорил о практической мощи знания. В XVII веке, например, одним из основных аргументов в защиту науки был тезис о том, что она несет «пользу ближнему», «пользу людям», «процветание человеку». Дело, однако в том, что эта польза виделась вовсе не в приложениях научного знания в технике и технологии.

Во второй половине XIX века, однако, развертывается крупномасштабное производство продуктов органической химии, удобрений, взрывчатых веществ, лекарств, электротехнических товаров. Разработку их могут вести только те, кто обладает познаниями в соответствующих областях науки.

В результате довольно быстро выясняется, что, казалось бы, абстрактные научные исследования могут приносить вполне конкретный и осозаемый практический эффект, доступный количественному учету. Осознается, что наука может выступать мощным катализатором того процесса непрерывной рационализации средств человеческой деятельности, который уже начался и становился все более необратимым. Характерно, что и здесь, как и в сфере культуры и мировоззрения, наука недолго ограничива-
лась подчиненной ролью и уже вскоре выявила свой потенциал силы, революционизирующей технику и технологию.

Эта вновь возникающая социальная роль науки получает соответствующее оформление и закрепление.

Наряду с той наукой, которая существовала в прошлом и которую иногда называют «малой наукой», возникает «большая наука» — новая обширная сфера научной и научно-технической деятельности, сфера прикладных исследований и разработок.

— Массовый характер приобретает привлечение ученых в лаборатории и конструкторские отделы промышленных предприятий и фирм.

— Деятельность ученого строится здесь на индустриальной основе; он решает вполне конкретные задачи, диктуемые не логикой развития той или иной научной дисциплины, а потребностями совершенствования, обновления техники и технологий.

Деятельность ученого мотивируется при этом не столько ценностями искания истинного знания, сколько ценностями получения технического эффекта. Это, между прочим, становится источником конфликтов внутри научного сообщества, далеко не исчерпавших себя и в наше время. Конфликт осознается как противостояние ценностей «чистой науки», аристократической по своему духу, не отягченной мирскими заботами и «плебейских» ценностей коммерциализированной науки, поддающихся технико-экономической калькуляции.

Так, английский ученый и писатель Ч. Сноу, вспоминая о своей работе в Кембридже в 20-х—30-х годах нашего столетия, следующим образом характеризовал тогдашнюю атмосферу: «Больше всего мы гордились тем, что наша научная деятельность ни при каких мыслимых обстоятельствах не может иметь практического смысла. Чем громче это удавалось провозгласить, тем величественнее мы держались».

Создание постоянных каналов для практического использования научных знаний имеет значительные последствия и для науки, и для окружающей ее социальной среды.

— Если говорить о науке, то наряду с тем, что она получает новый мощный импульс для своего развития и для укрепления своей социальной роли, она обретает и такие формы организации, которые намного облегчают непрерывный ток ее результатов в сферу техники и технологий.

— И общество со своей стороны, все более явно ориентируется на устойчивую и непрерывно расширяющуюся связь с наукой. Для современ-
ной промышленности, и далеко не только для нее, новые научные знания и методы, повышающие ее эффективность, становятся не просто желательными. Все более широкое их применение выступает теперь как обязательное условие существования и воспроизводства многих видов деятельности, возникших в свое время вне всякой связи с наукой, не говоря уже о тех, которые ею порождены.

4. ПРЕВРАЩЕНИЕ НАУКИ В ПРОФЕССИОНАЛЬНУЮ СФЕРУ ДЕЯТЕЛЬНОСТИ

Рассматривая становление научной профессии, американские социологи Т. Парсонс и Н. Сторер отмечали, что одна из главных характеристик научной деятельности как профессии — «наличие адекватных взаимообменов с обществом, позволяющих, как минимум, членам научной профессии обеспечивать свою жизнь за счет только своих профессиональных занятий, — сложилась главным образом в последние сто лет и в настоящее время, по-видимому, прочно утвердилась».

Собственно говоря, профессионализация в науке в каких-то масштабах происходила и раньше.

Например, после создания в 1724 г. в России Петербургской Академии наук ее действительные члены получали жалованье от государственной казны, что, между прочим, привлекло в нее немало видных западных ученых. А во время Великой Французской революции, с 1795 года, стали получать плату и ученые во Франции.

Однако тогда это было еще скорее формой государственного меценатства, и только в конце XIX — начале XX столетия получающий плату ученый-профессионал стал преобладающей фигурой в научном сообществе, поскольку была признана экономическая значимость научной деятельности.

Профессионализация науки наряду с начавшимся процессом превращения этой профессии в массовую оказала глубокое воздействие на нормативно-ценостную составляющую научной деятельности.

Касаясь процесса профессионализации, американский философ и историк науки Л. Грэхем пишет: «В двадцатом столетии на смену любителям и дилетантам в науке постепенно пришли наставляющими на жалованье профессионалы, и в ходе этого процесса изменился тон научной литературы. Прежде журналы научных обществ часто публиковали умозрительные ста-
тьи, в которых вперемежку рассматривались нормативные и фактические вопросы. К концу девятнадцатого столетия такой стиль почти полностью исчез со страниц престижных научных журналов. Членство в научных обществах становится все более ограниченным, часто требуя высшего образования и сопутствующего ему приобщения к этому исследований. Нормой серьезного профессионального ученого стал трезвый, строго следующий за фактами стиль рассуждения».

В целом профессионализация и сопровождавшая ее нарастающая специализация научной деятельности влияли на ценностные ориентации ученых по двум линиям.

— С одной стороны, ученые-профессионал в сфере своей компетенции склонны осуществлять строгий контроль, резко ограничивая возможности высказывания некомпетентных, любительских воззрений.

— С другой стороны, они в общем и целом вовсе не расположены высказываться по вопросам, выходящим за рамки их компетенции (которая, заметим, в ходе прогрессирующей специализации становится все более узкой).

Любитель

считает себя вправе с более или менее одинаковой степенью уверенности выносить суждения по довольно широкому кругу вопросов.

Профессионал

в своих глазах, и в глазах окружающих — не только коллег, но и общественного мнения — признается компетентным лишь в ограниченной сфере, а именно в той, в которой оплачиваются его знания и квалификация.

Профессионализация усиливает влияние той установки на резкое разграничение нормативных, ценностных суждений с одной стороны, и фактических, свободных от ценностей — с другой, о котором мы уже говорили. Только последние считаются приличествующими ученому как профессионалу, который рассматривает себя и рассматривается другими как поставщик средств — объективных научных знаний — для достижения целей, определяемых не им, а теми, кто в обмен на эти знания дает ему средства для обеспечения своей жизни.

С предельной четкостью и даже драматизмом эта позиция была выражена немецким социологом М.Вебером в его прочитанной в начале столетия лекции «Наука как призвание».
«Сегодня наука, — отмечал М.Вебер, — это профессия, осуществляе- мая как социальная дисциплина и служащая делу самосознания и позна- ния фактических связей, а вовсе не милостивый дар пророков, приносящий спасение и откровение, и не составная часть размышления мудрецов и философов о смысле мира. Это, несомненно, неизбежная дан- ность в нашей исторической ситуации, из которой мы не можем выйти, пока остаемся верными самим себе».

Как видим, профессионализация связана с таким определением соци- альной роли ученого, когда он выступает как поставщик специализирован- ных знаний и ответствен лишь за их достоверность, обоснованность и про- веренность.

Установка на нормативно-ценностную нейтральность науки получи- ла наибольшее распространение в научном сообществе в 30—40-е годы нашего века, когда она воспринималась многими как выражение подлин- ной сущности науки. Именно на эту установку в значительной мере опира- лась, в то же время давая ей понятийное оформление, философия неопози- тивизма, в рамках которой разрабатывались соответствующие представле- ния о природе и содержании научной деятельности.

Современный американский философ науки С.Тулмин вспоминает, что такая позиция, даже в преувеличенных формах выражалась его про- фессорами и старшими коллегами, когда он перед Второй мировой войной обучался в Англии. Главным для них было стремление «выбрать в каче- стве центра собственного внимания наиболее чистый, наиболее интеллек- туальный, наиболее автономный и наименее связанный с этическим и во- просами край спектра взаимодействий между наукой и ценностями».

В ходе последующего развития науки, впрочем, выяснилось, что так- кие представления отнюдь не являются прямым и неискаженным отраже- нием духа и ценностей науки. Скорее они характеризовали ту линию пове- дения, которой считали необходимым придерживаться лидеры научного сообщества в его взаимоотношениях с теми социальными силами, от коих зависели возможности прогрессивного развития науки.

«Парадоксально, — пишет Л.Грэхем, — что в начале двадцатого сто- летия, именно тогда, когда исследователи в самых разных дисциплинах начали изучать основы человеческого поведения, вера в то, что наука и ценности суть раздельные сферы, стала явным этосом науки в Западной Европе и Северной Америке. Такой ход событий, однако, покажется менее парадоксальным, если мы заметим следующее: как раз потому, что наука
более непосредственно начала затрагивать ценности, ученые сочли удобным говорить о том, что их исследования свободны от ценностей. Таким путем удалось избежать многих раздоров, или, если говорить точнее, удалось отсрочить день, когда с этими вопросами пришлось столкнуться вплотную».

Итак, отметим:

узкая трактовка социальной роли ученого как всего лишь носителя специализированного знания, которому закрыт доступ в сферу ценностей (исключая, конечно, специфические ценности научной профессии), возникает только на определенной стадии развития науки, в соответствующих социально-исторических условиях, при специфическом характере взаимосвязей науки и общества.

В чем-то такая трактовка является продолжением и развитием сложившейся ранее системы ценностей ученого; в других отношениях, однако, она вступает в противоречие — сначала скрытое, но с течением времени становящееся все более явным — с этой более широкой системой.

В допрофессиональной науке ученый считал себя вправе высказываться по достаточно широкому кругу вопросов, и это было обусловлено тем, как он понимал свое предназначение, свою роль в обществе.

— В частности, в его самосознании заметное место занимали просветительские моменты — он воспринимал себя как носителя столь необходимого людям света истинного знания, способного развеять тьму невежества и предрассудков.

— Он не боялся браться за обсуждение самых серьезных мировоззренческих вопросов, хотя, быть может, порой делал это поспешно, далеко отрываясь от фундамента достоверных научных знаний.

— Он, наконец, видел в науке великую гуманизирующую силу и едва ли согласился бы считать плоды своей деятельности знания — лишь средством для достижения каких-то внешних по отношению к науке, сугубо утилитарных целей. И если в условиях бурной профессионализации науки эта система ценностей «малой науки» на какое-то время отступила на второй план, то все же полностью исключать ее влияние было бы преждевременно.
5. БРЕМЯ СОЦИАЛЬНОЙ ОТВЕТСТВЕННОСТИ

Обратимся теперь к следующему этапу социальной институционализации науки, начало которого можно датировать годами окончания Второй мировой войны и который продолжается и в наши дни. На этом этапе происходит новое изменение, и прежде всего расширение социальных функций науки, а соответственно изменяются и нормативно-ценностные ориентиры научной деятельности.

На предыдущем этапе институционализации науки особенно интенсивным стало применение научных знаний в качестве технико-технологических, организационных и т.п. средств человеческой деятельности. При этом широкое распространение получили воззрения, согласно которым, ограничиваясь сферой средств, наука непричастна к целям, которые ставят перед собой люди.

Однако дальнейшие события показали, что это не так. Действительно, реальное соотношение целей и средств в деятельности человека и общества не допускает столь жесткого разграничения.

Цели, которые преследуют люди определяются не только их желаниями, стремлениями и интересами, но также и тем, какими средствами они располагают. Ставя перед собой те или иные цели, если эти цели не абстрактные, а реально достижимые, общество всегда ориентируется на уже имеющуюся в его распоряжении совокупность средств деятельности.

Итак, характер и масштабы человеческой деятельности, ее цели и задачи в решающей степени зависят от тех средств, которые созданы человечеством.

И если поставленная цель обусловливает выбор средств для ее достижения, то и наоборот, совокупность доступных средств деятельности предопределяет горизонт реально достижимых в данных условиях целей.

В этой связи можно привести такой пример. Компьютеры первоначально создавались как средство для ускорения и автоматизации громоздких рутинных расчетов. Однако по мере того, как они усложнялись и совершенствовались методы работы с ними, круг целей и задач, решаемых с помощью этого средства, непрерывно расширялся.

И, что для нас здесь особенно важно, стало возможным ставить такие цели — скажем, машинный перевод с одного языка на другой, машинное доказательство теорем, сочинение стихов и музыки и многое другое, которые прежде представлялись немыслимыми.
Если же принять во внимание, что наука стала источником поистине
безбрежного многообразия новых средств деятельности, то станет ясно,
что уже в силу одного этого она существенным образом участвует и в
определении тех целей, которые люди ставят перед собой и считают до-
стижимыми.

Хорошо известно, что бурный научно-технический прогресс состав-
ляет одну из главных причин таких опасных явлений, как вызывающее
tревогу истощение природных ресурсов планеты, растущее загрязнение
воздуха, воды, почв. Следовательно, наука весьма причастна к тем ради-
кальным и далеко не безобидным изменениям, которые происходят сего-
дня в среде обитания человека.

Но этого не скрывают и сами ученые. Больше того, именно они были
в числе тех, кто стал первым подавать сигналы тревоги, именно они пер-
выми увидели симптомы надвигающегося кризиса и привлекли к этой теме
внимание политических и государственных деятелей, хозяйственных руко-
водителей, общественного мнения.

Они же были среди инициаторов многих массовых движений эколо-
гической направленности. Научным данным, наконец, отводится ведущая
роль и в определении масштабов экологической опасности.

Мы видим, что в данном случае ученые далеко не ограничиваются
созданием средств для осуществления поставленных перед ними извне це-
лей, но сами обнаруживают проблему, причем проблему прежде всего со-
циальную и лишь вследствие этого — научную.

Наука, таким образом, не только обслуживает человека плодами сво-
их открытий и привлекает своими перспективами, но и заставляет его бес-
покоиться за свое будущее, требует от него решений и действий.

— Возникновение экологической опасности и ее обнаружение,

— первые формулировки проблемы и последующие ее уточнения,

— выдвижение целей перед обществом и создание средств для их до-
стижения — все здесь оказывается замкнутым на научную деятельность.

Многие мыслители прошлого ждали от научного знания ответов на
вопросы о смысле бытия, о месте человека в мире, о правильном устрой-
стве человеческой жизни и именно в этом видели практическое предназнача-
ние науки.

Однако теперь ее мировоззренческая значимость выявляется совсем в
иной плоскости:
ее развитие, вызванные ею изменения в жизни общества и в мире человека во многом определяют специфические для нашего времени формы постановки и обсуждения этих вопросов.

Пронизав сферу средств деятельности и укоренившись здесь, наука довольно скоро начала затрагивать и самые основания деятельности. Ее участие теперь далеко не ограничивается той стадией, когда смысл и цели деятельности уже заданы, очерчены и определены, и надо лишь найти надлежащие средства. Напротив, она заявляет о себе и в момент определения смысла и выбора цели.

Но если признается, что научное знание причастно к определению смысла и целей человеческой деятельности, то отсюда с неизбежностью следует, что и тезис о ценностной нейтральности науки вовсе не безупречен.

 Ведь людские ценности с наибольшей полнотой проявляются именно тогда, когда люди определяют смысл и цели того, что они делают.

Ущербность позиции, утверждающей ценностную нейтральность науки, с особыей остротой обнаруживается тогда, когда плоды научного прогресса несут людям зло.

Подобное случилось, например, после уже упоминавшихся событий, связанных с созданием и использованием атомного оружия в 1945 г. Эхо атомных взрывов, прогремевших над Хиросимой и Нагасаки, достигло и сообщества физиков, поставив их перед сложным моральным выбором.

Этос профессиональной науки подсказывал им путь, позволяющий снять с себя бремя социальной ответственности. Для этого было достаточно прибегнуть к спасительной мысли о том, что ученые лишь поставщики средств и их не касается то, как эти средства используются. Однако критическая ситуация обнаружила, что на деле власть этих нормативных стандартов далеко не безгранична и что высокие идеалы «малой науки» прошлого вовсе не выветрились под напором приземленных ценностей «большой науки» настоящего.

И сообщество физиков в целом, и его признанные лидеры заняли социальную ответственную позицию. Им, правда, не удалось, несмотря на все их усилия, на обращение к политикам с призывом не применять ядерное оружие против мирных жителей, предотвратить катастрофу.

Но у тогдашних событий есть и еще один итог — ценостные установки профессиональной науки продемонстрировали свою недостаточность, неадекватность реальной роли ученых в обществе, в то время как
проблематика их социальной ответственности стала неотъемлемой составной частью существования и развития науки.

Конечно, нежелание ученых брать на себя бремя социальной ответственности за последствия того, что ими порождено, — не такая уж редкость. Важно, однако, то, что подобная позиция воспринимается отнюдь не как естественная и единственно возможная для ученого, а как позиция, которую приходится специально оправдывать и защищать.

В книге «Часть и целое» немецкий физик В.Гейзенберг вспоминал о своих беседах с коллегой — К.-Ф. фон Вейцзекером в августе 1945 г., когда они, находясь в английском плену, обсуждали последствия атомной бомбардировки.

Подводя итоги этой беседы, В.Гейзенберг заметил: «И все же мы поняли... что для индивида, перед которым научный (466)
или технический прогресс поставил важную задачу, недостаточно думать лишь об этой задаче. Он должен рассматривать ее разрешение как часть общего хода событий, к которому он ясным образом относится положительно, если он вообще трудится над подобными проблемами. Если он будет учитывать эту общую взаимосвязь, то сможет прийти к правильным решениям. Но это, конечно, означает, что он должен будет стремиться к участию в общественной жизни, к влиянию на государственное управление, если он хочет не только мыслить, но также и поступать и действовать правильно».

Итак, чем более весомой и более многообразной становится роль науки в обществе, тем более основательно ученым — и как профессионалам и как гражданам — приходится участвовать в социальной жизни, тем меньше у них остается возможностей дистанцироваться и изолироваться от интересов и проблем, которыми живет общество.

Сегодня уже не для кого не секрет, что достижения науки далеко не всегда несут благо людям. Довольно часто они порождают новые проблемы и трудности, порой весьма серьезные.

Очевидно также и то, что никто не в состоянии настолько глубоко и полно предвидеть эти негативные последствия, насколько это доступно ученым.

Принято считать, что последствия исследований, особенно фундаментальных, часто непредсказуемы. Это действительно так, но в современных условиях специальные усилия, направленные на предвидение воз-
можных последствий практического использования достижений, становятся социально необходимыми.

И именно ученые могут раньше и более серьезно, чем кто-либо другой, эффективно приложить эти усилия. Большая информированность, осведомленность ученых накладывает на них особую социальную ответственность.

В целом же нынешний этап институционализации науки можно охарактеризовать как этап, на котором проблемы социальной ответственности науки занимают все более заметное место. Ушли в прошлое как те времена, когда научную деятельность как таковую можно было считать безусловным благом, так и те времена, когда она могла представляться ценностью нейтральной, лежащей «по ту сторону добра и зла».

Научное сообщество, получающее сегодня солидную долю ресурсов общества, поставлено перед необходимостью постоянно, снова и снова демонстрировать обществу и то, что блага, которые несет людям прогресс науки, перевешивают его негативные последствия, и то, что оно, сообщество, озабочено возможностью таких последствий и стремится предупредить их, либо, если они уже стали реальностью, нейтрализовать их.

XX. ЭТИКА НАУКИ И ОТВЕТСТВЕННОСТЬ УЧЕНОГО

1. ЗНАНИЕ ЧЕЛОВЕКА И ДЛЯ ЧЕЛОВЕКА

Знание вообще и научное знание в частности может порождаться лишь теми способами и средствами, которые даны конституцией человека, его интеллектуальными и психофизиологическими характеристиками, такими, как объем памяти, устройство и разрешающая способность органов чувств и т.п.

Бессспорно, люди различаются по этим характеристикам, которые к тому же могут быть в довольно широких пределах развиты путем воспитания и тренировки. Бессспорно и то, что человек создает различные технические средства, пользуясь которыми он расширяет свои познавательные возможности.

Тем не менее новое знание порождается человеком, и при этом его содержание как бы «проектируется» на специфически человеческий аппарат познания, оно всегда должно быть соразмерно человеку, человеческим способностям и возможностям.
Впервые на это обратил внимание И. Кант, который не только отметил то, что мы не знаем как устроен и работает любой другой интеллект, помимо человеческого, но и поставил это обстоятельство в фокус своего анализа познания. Тем самым, между прочим, была в корне подорвана та возможность толковать человеческий интеллект по аналогии с божественным, которая была заключена в метафоре о «Книге природы».

Любой реальный результат познавательной деятельности, любое новое знание не сводится к бестрашной регистрации той или иной стороны окружающего мира. Это знание всегда представляет собой человеческое достижение, решение такой задачи, которая поставлена и осмыслена им самим.

В отличие от компьютера, действующего по волне программиста, человек как познающий субъект может решать проблему, даже поставленную перед ним извне, лишь тогда и постольку, когда и поскольку он осознает ее, как свою собственную, т. е. когда он сделает своей целью ее решение.

Итак, познавательная деятельность есть деятельность целенаправленная и целесознанная.

В свою очередь, постановка цели и выбор для ее достижения средств — это всегда выход за пределы мира сущего в мир должного.

А это значит, что по своей сути научная познавательная деятельность подлежит ценностным и моральным оценкам.

Но человеческие характеристики научного познания выражаются не только в том, что оно осуществляется человеком, но и в том, что оно осуществляется для человека. Здесь имеются в виду не только возможности его практически-прикладного использования, но и то, что знание, которое получает данный исследователь, по своим свойствам должно быть таким, чтобы его могли усвоить, воспринять и оценить и другие, по крайней мере его коллеги.

В этой связи будет уместно привести такие слова К. Маркса: «Но даже и тогда, когда я занимаюсь научной и т. п. деятельностью — деятельностью, которую я только в редких случаях могу осуществлять в непосредственном общении с другими, — даже и тогда я занят общественной деятельностью, потому что я действую как человек».

Вовлеченность человека, в данном случае ученого, во взаимодействие с другими людьми сказывается и на природе научного знания, которое должно быть соразмерно человеку. Доступное для человеческого вос-
приятия, понимания и осмысленное исследование не будет считаться завершенным, если его результат не доложен на научном симпозиуме или не опубликован в научном журнале.

Ученый, делая свой результат достоянием научного сообщества, в какой-то мере отчуждает его от себя, а его коллеги получают возможность воспользоваться этим результатом:

для его критической оценки, чтобы на его основе осуществлять новые исследования, для изложения его в учебнике, для его прикладного применения.

Заметим, что сегодня, когда общепринятой стала практика коммерческого использования результатов научных исследований, их обнародование перед научным сообществом порождает серьезные трудности. Разделяются даже предложения юридически защищать, патентовать каждый новый результат, прежде чем сообщать о нем коллегам.

Коммерциализация научных исследований, конечно, существенно расширяет доступ ученых к общественным ресурсам, но вместе с тем ставит перед научным сообществом такие проблемы, к решению которых нормативно-ценностная система науки пока еще не смогла приспособиться.

2. НОРМЫ НАУЧНОЙ ДЕЯТЕЛЬНОСТИ

Как бы то ни было, научное знание, как мы видим, — это такая материя, по поводу которой люди вступают во взаимодействие и в общение. Это общение, как правило, носит специализированный характер и требует от его участников особой подготовки.

Таким образом, получаемое ученым знание о мире изначально, внутренне ориентировано на то, чтобы быть воспринятым другими.

При этом уже не существенно, насколько осознается такая ориентированность самим ученым, — ему не надо специально ставить перед собой такую цель, по крайней мере до тех пор, пока он занят собственно исследованием, а не изложением полученных результатов.

Такие свойства научного знания порождаются тем, что сам процесс его получения регулируется методологическими нормами, которые каждый ученый не должен придумывать для себя заново, а может усваивать в ходе своей профессиональной подготовки.
И, опять-таки, коль скоро познание регулируется нормами, пусть даже нормами познавательными и методологическими, следование им или пренебрежение ими выступает и как акт морально-

gо выбора, предполагающий ответственность ученого перед своими коллегами и перед научным сообществом, т.е. его профессиональную ответственность.

Широко известно, например, изречение Аристотеля: »Платон мне друг, но истина дороже». Смысл его в том, что в стремлении к истина ученый не должен считаться ни со своими симпатиями и антипатиями, ни с какими бы то ни было иными привходящими обстоятельствами.

В повседневной научной деятельности, однако, чаще всего бывает невозможно сразу же оценить полученное знание как истино либо заблуждение. Поэтому и нормы научной этики не требуют, чтобы результат каждого исследования непременно был истиным знанием.

Они требуют лишь, чтобы этот результат был новым знанием и при том так или иначе — логически либо экспериментально — обоснованным. Ответственность за соотношение такого рода требований лежит на самом ученом, и он не может переадресовать ее никому другому.

Невозможность сразу же однозначно оценить результат исследования обусловливает характерную взаимозависимость между членами научного сообщества.

— С одной стороны, коллеги должны исходить из того, что сообщаемый результат получен в ходе добросовестно проведенного исследования, т.е. с соблюдением надлежащих технических норм экспериментирования и методологических норм. Разумеется, в тех случаях, когда нарушение этих норм очевидно, результат попросту не будет заслуживать серьезного отношения. Нередко, однако, проверка требует как минимум повторения исследования, что немыслимо применительно к каждому результату.

— С другой стороны, и сам исследователь, адресуясь к коллегам, вправе претендовать на их беспристрастное и объективное мнение по поводу сообщаемого им результата.
Оно определяет оценку данного исследования, от которой зависит научная репутация и в значительной мере возможность проведения дальнейших исследований.

Таким образом, эта взаимозависимость важна с точки зрения устойчивого воспроизводства научной деятельности и социального института науки. Она выступает в качестве такого механизма саморегуляции и самоорганизации научной деятельности, которая в довольно широких пределах основывается на взаимном доверии ее участников.

Отметим, что технические нормы экспериментирования и методологические нормы выполняют двоякую роль.

— Во-первых, они имеют смысл постольку, поскольку следование им гарантирует получение достоверного результата.

— Во-вторых, они же выступают и как форма социального контроля в рамках научного сообщества.

Мы видим теперь, что проблемы этики науки в определенных отношениях перекрещиваются с проблемами методологии науки. Одна из задач методологии — анализ и обоснование методов и процедур, применяемых в научной деятельности, а также выявление тех далеко не очевидных, предпосылок, которые лежат в основе той или иной теории, того или иного научного направления.

В этой связи методологию интересуют и нормы научной деятельности, такие, как исторически изменяющиеся стандарты доказательности и обоснованности знания, образцы и идеалы, на которые ориентируются ученые.

Нормативная структура и нормативная регуляция научной деятельности, рассматриваемая, разумеется, под специфическим углом зрения, представляет собой объект изучения и в этике науки.

Как отмечает в этой связи норвежский философ Г. Скирбекк, «будучи деятельностью, направленной на поиск истины, наука регулируется нормами:

«ищи истину»,
«избегай бессмыслицы»,
«выражайся ясно»,
«старайся проверять свои гипотезы как можно более основательно».
примерно так выглядят формулировки этих внутренних норм науки».
Следовательно, заключает он, этика в этом смысле содержится в самой науке, и отношения между наукой и этикой не ограничиваются вопросами о хорошем или плохом применении научных результатов

3. ЭТОС НАУКИ

Нормы научной этики, как уже отмечалось, редко формулируются в виде специфических перечней и кодексов. Однако известны попытки выявления, описания и анализа этих норм.

Наиболее популярна в этом отношении концепция Р. Мертона, представленная в работе «Нормативная структура науки» (1942 г.) В ней Р. Мертон дает описание этоса науки, который понимается им как комплекс ценностей и норм, воспроизводящихся от поколения к поколению ученых и являющихся обязательными для человека науки. С точки зрения Р. Мертона, нормы науки строятся вокруг четырёх основополагающих ценностей.

— Первая из них — универсализм, убеждение в том, что изучаемые наукой природные явления повсюду протекают одинаково и что истинность научных утверждений должна оцениваться независимо от возраста, пола, расы, авторитета, титулов и званий тех, кто их формулирует. Требование универсализма предполагает, в частности, что результаты маститого ученого должны подвергаться не менее строгой проверке и критике, чем результаты его молодого коллеги. Наука, стало быть, внутренне демократична. Как вопиющее нарушение этой ценности Р. Мerton рассматривал попытки создания в нацистской Германии того времени «арийской физики».

— Вторая ценность — общность (в буквальном переводе — «коммунизм»), смысл которой в том, что научное знание должно свободно становиться общим достоянием. Тот, кто его впервые получил, не вправе монопольно владеть им,

(474)

хотя он и имеет право претендовать на достойную оценку коллегами собственного вклада.

— Третья ценность — незаинтересованность. Первичным стимулом деятельности ученого является бескорыстный поиск истины, свободный от соображений личной выгоды — завоевания славы, получения денежного вознаграждения. Признание и вознаграждение должны рассматриваться...
как возможное следствие научных достижений, а не как цель, во имя которой проводятся исследования.

— Четвертая ценность — организованный скептицизм. Каждый ученый несет ответственность за оценку доброкачественности того, что сделано его коллегами, и за то, чтобы эта оценка стала достоянием гласности. Причем ученый, опираясь в своей работе на достоверные данные, заимствованные из работ его коллег, не освобождается от ответственности, коль скоро сам он не проверил точность используемых данных. Из этого требования следует, что в науке нельзя слепо доверяться авторитету предшественников, сколь бы высок он ни был. Равно необходимы как уважение к тому, что сделали предшественники, так и критическое — скептическое — отношение к их результатам. Более того, ученый должен не только настойчиво отстаивать свои научные убеждения, используя все доступные ему средства логической и эмпирической аргументации, но и иметь мужество отказаться от этих убеждений, коль скоро будет обнаружена их ошибочность.

Предпринятый Р. Мертоном анализ ценностей и норм науки неоднократно подвергался критике, не всегда, впрочем, обоснованной. Отмечалась, в частности, абстрактность предложенных Р. Мертоном ценностей, и то, что в своей реальной деятельности ученые нередко нарушают их, не подвергаясь при этом осуждению со стороны коллег.

Во многом под воздействием этой критики Р. Мертон вновь обратился к проблеме этоса науки в 1965 г. в работе «Амбивалентность ученого».

В ней он отметил наличие противоположно направленных нормативных требований, т. е. норм и контнорм, на которые ориентируются ученые в своей деятельности. Противоречивость этих требований приводит к тому, что ученый нередко оказывается в состоянии амбивалентности, неопределенности по отношению к ним.

К примеру:
ему надлежит как можно быстрее вместе с тем он должен тщательно делать свои результаты доступными проверить эти результаты перед их для коллег; публикацией;
он должен быть восприимчивым по но не должен слепо подчиняться ин- отношению к новым идеям; теллектуальной моде;
от него требуется знать все относящиеся к области его интересов рабочие предшественников и современников.

Таким образом, ученый может и должен проявлять определенную гибкость, поскольку нормативно-ценностная структура науки не является жесткой.

И тем не менее наличие норм и ценностей (пусть не именно этих, но в чем-то сходных с ними по смыслу и по способу действия) очень важно для самоорганизации научного сообщества.

Отдельные нарушения этических норм науки, хотя и могут вызывать серьезные трудности в развитии той или иной области знания, в общем все же чреваты большими неприятностями для самого нарушителя, чем для науки в целом. Однако если такие нарушения приобретают массовый характер, под угрозой уже оказывается сама наука.

Сообщество ученых прямо заинтересовано в сохранении климата доверия, поскольку без него было бы невозможно воспроизводство и развитие науки.

4. СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ УЧЕНОГО

В отличие от профессиональной, социальная ответственность ученых реализуется во взаимоотношениях науки и общества. Поэтому ее можно характеризовать как внешнюю (иногда говорят — социальную) этику науки.

При этом следует иметь в виду, что в реальной жизни ученых проблемы внутренней и внешней этики науки, профессиональной и социальной ответственности ученых бывают тесно переплетены между собой.

Интерес к проблемам социальной ответственности ученых возник, конечно, отнюдь не сегодня, однако в последние 20—25 лет эта область изучения науки предстала в совершенно новом свете.

Говоря об общей направленности этих сдвигов, отметим, что вплоть до середины нашего столетия проблемы социальной ответственности науки и ученых, вообще говоря, не были объектом систематического изучения.

Их обсуждение часто носило оттенок необязательности, порой сбивалось в морализование, и потому нередко представлялось плодом до-
сужих рассуждений. Такие рассуждения могли быть ярким выражением гуманистического пафоса и озабоченности автора, но они, как правило, мало соотносились с реальной практикой научных исследований.

Этические вопросы и этические оценки касались науки в целом, а потому не могли оказывать прямого влияния на деятельность конкретного исследователя, на формирование и направленность его научных интересов.

Было бы, впрочем, ошибкой считать, что они не имели значения — их роль в процессе становления современной науки несомненна. Ведь в ходе этого процесса наука, как мы помним, должна была, помимо всего прочего, получить и моральную санкцию — обоснование и оправдание перед лицом культуры и общества.

Еще Сократ учил, что человек поступает дурно лишь по неведению, и что зная, в чем состоит добродетель, он всегда будет стремиться к ней.

Тем самым знание признавалось в качестве условия — и притом условия необходимого для добродетельной жизни; но вместе с тем и само искание знания оказывалось деятельностью безусловно благой.

В последующей истории философской мысли выдвигались различные трактовки того, что именно есть знание и чем должен направляться процесс познания. Могли меняться те практические акценты, с которыми связывалось обладание знанием, истиной (вспомним хотя бы эгекновское «знание — сила») — неизменной оставалась эта безусловно необходимая благость истины.

И сегодня, когда социальные функции науки быстро умножаются и разнообразятся, когда непрерывно увеличивается число каналов, связывающих науку с жизнью общества, обсуждение этических проблем науки остается одним из важных способов выявления и ее изменяющихся социальных и ценностных характеристик. Однако ныне попытки дать недифференцированную, суммарную этическую оценку науке как целому, оказываются — независимо от того, какой бывает эта оценка, положительной или отрицательной, — все менее достаточными и конструктивными.

Те стадии развития науки и социально-культурного развития, когда можно было оспаривать необходимость самого существования науки как социального института, ушли в прошлое.

Из сказанного отнюдь не следует, что наука больше вообще не может быть объектом этической оценки, что единственная оставшаяся перед людьми перспектива — это слепо поклоняться научно-техническому про-

kupovz_v.i_i_dr_filosofiya_i_metodologiya_nauki
грессу, по возможности адаптируясь к его многочисленным и не всегда благоприятным последствиям.

Вопрос в том, что такая оценка должна быть более дифференцированной, относящейся не столько к науке в целом, сколько к отдельным направлениям и областям научного познания. Именно здесь морально-этические суждения ученых и общественности не только могут играть, но действительно играют серьезную и конструктивную роль.

Опыт послевоенных десятилетий задал существенно иные измерения обсуждению социально-этических проблем науки.

М. Борн, говоря об этом в своих воспоминаниях, отмечал, что в «реальной науке и ее этике произошли изменения, которые делают невозможным сохранение старого идеала служения знанию ради него самого, идеала, в который верило мое поколение. Мы были убеждены, что это никогда не сможет оборнуться злом, поскольку поиск истины есть добро само по себе. Это был прекрасный сон, от которого нас пробудили мировые события». Здесь имеются в виду прежде всего — американские ядерные взрывы над японскими городами.

Большую роль в привлечении внимания общественности к последствиям применения научно-технических достижений сыграло экологическое движение, остро проявившееся с начала 60-х годов. В это время в общественном сознании пробуждается беспокойство в связи с растущим загрязнением среды обитания и истощением естественных ресурсов планеты, общим обострением глобальных проблем.

Именно социальная ответственность ученых явилась тем исходным импульсом, который заставил сначала их, а затем и общественное мнение осознать серьезность ситуации, угрожающей будущему человечества.

В отличие от предыдущего примера в этом случае ответственное отношение ученых заявило о себе еще до того, как положение дел — если его рассматривать в целом — стало непоправимым. Кроме того, если в первом случае непосредственно вовлеченными в трагическое развитие событий оказались представители лишь некоторых областей физики, то экологическое движение оказалось по сути дела общенаучным, затронувшим представителей самых разных областей знания.

Примечательно также и то, что ученые вовлечены в экологическое движение не только своими общественными, но и сугубо профессиональными, собственно научными интересами. Достаточно напомнить в этой связи о том, что разнообразным сторонам проблемы «человек и среда его
обитания» посвящена внушительная доля современных научных исследований, причем не только прикладного, но и фундаментального характера.

Социальная ответственность ученых, как мы видим, оказывается одним из факторов, определяющих тенденции развития науки, отдельных дисциплин и исследовательских направлений.

Отметим, наконец, еще один факт.

В 70-е годы широкий резонанс вызвали результаты и перспективы биомедицинских и генетических исследований. Кульминационным моментом стал призыв группы молекулярных биологов и генетиков во главе с П.Бергом (США) к объявлению добровольного моратория (запрета) на такие эксперименты в области генной инженерии, которые могут представлять потенциальную опасность для генетической конституции живущих ныне организмов.

Суть дела в том, что созданные в лаборатории рекомбинантные (гибридные) молекулы ДНК, способные встроиться в гены какого-либо организма и начать действовать, могут породить совершенно невиданные и, возможно, потенциально опасные для существующих видов формы жизни. В развернувшихся дискуссиях предметом обсуждения стали этические нормы и регулятивы, которые могли бы оказывать воздействие как на общее направление, так и на сам процесс исследования.

Объявление моратория явилось беспрецедентным событием для науки: впервые ученые по собственной инициативе решили приостановить исследования, сулившие им колоссальные успехи.

После объявления моратория ведущие ученые в этой области разработали систему мер предосторожности, обеспечивающих безопасное проведение исследований.

Этот пример показателен в том смысле, что ученые, обращаясь с призывом к коллегам и к общественному мнению, впервые пытались привлечь внимание не обещанием тех благ, которых можно ожидать от данной сферы научных исследований, а предупреждением о возможных опасностях.

А это значит, что проявление чувства социальной ответственности, обеспокоенности выступает в качестве не только общественно приемлемой, но и общественно признаваемой и, более того, общественно стимулируемой формы поведения ученых.
Призывая ученых извлечь уроки из этих событий, американский биохимик, лауреат Нобелевской премии Д. Балтимор отмечал:

«Я хотел бы надеяться, что если на горизонте появится другая тема, подобная рекомбинантной ДНК, то те, кто ее обнаружат, не побоятся говорить о ней. Я также надеюсь, что научное сообщество будет более зрелым в своих формулировках и решениях, так что общественность будет склонна верить действиям ученых, а не сомневаться в их мотивах и их честности».

Впоследствии выяснилось, что потенциальные опасности экспериментов в целом были преувеличены. Однако это вовсе не было очевидно тогда, когда выдвигалось предложение о моратории.

И те знания о безопасности одних экспериментов и об опасности других, которыми располагает ныне наука, сами явились результатом научных исследований, проведенных именно вследствие моратория.

Благодаря мораторию были получены новые научные данные, новые знания, новые методы экспериментирования, позволившие разделить эксперименты на классы по степени их потенциальной опасности, а также разработать методы получения ослабленных вирусов, способных существовать только в искусственной среде лаборатории.

Мы, таким образом, видим, что социальная ответственность ученых не есть нечто внешнее, некий довесок, неестественным образом связываемый с научной деятельностью.

Напротив, это — органическая составляющая научной деятельности, достаточно ощутимо влияющая на проблематику и направления исследований.

Рассмотренные примеры — а число их нетрудно было бы умножить — позволяют увидеть эволюцию этических проблем науки, которые становятся более конкретными и более резко Очерченными. В то же время мы можем заметить, что проблемы социальной ответственности ученых не только конкретизируются, но и в определенном смысле универсализируются — они возникают в самых разных сферах научного познания.

Таким образом, едва ли можно считать, что какая-либо область науки в принципе и на все времена гарантирована от столкновения со этими далеко не простыми проблемами.

В высшей степени характерными в этом отношении являются современные дискуссии, ожидания и опасения, вызванные развитием микро-
электроники и информатики, того, что нередко называют «компьютерной революцией». Бурный прогресс кибернетики и вычислительной техники, широкое внедрение роботов и компьютеров, проникающих в самые разные сферы жизни человека и общества, ставит немало неожиданных и острых вопросов о свободе и суверенности личности, о судьбе демократических общественных институтов. Многие из этих вопросов со своей точной ему прозорливостью предвидел еще основоположник кибернетики Н.Винер.

Известно, что фундаментальные научные открытия непредсказуемы, а спектр их потенциальных приложений бывает чрезвычайно широким. Уже в силу одного этого мы не вправе говорить о том, что этические проблемы являются достоянием лишь некоторых областей науки, что их возникновение есть нечто исключительное и преходящее, нечто внешнее и случайное для развития науки.

Вместе с тем было бы неверно видеть в них и следствие изначальной, но обнаруживающейся только теперь «греховности» науки по отношению к человечеству.

То, что они становятся неотъемлемой и весьма заметной стороной современной научной деятельности, является, помимо всего прочего, одним из свидетельств развития самой науки как социального института, ее все более возрастающей и все более многогранной роли в жизни общества.

Ценностные и этические основания всегда были необходимы для научной деятельности. Однако, пока результаты этой деятельности лишь спорадически оказывали влияние на жизнь общества можно было удовольствоваться представлением о том, что знание вообще есть благо, и поэтому сами по себе занятия наукой, имеющие целью приращение знаний, представляют собой этически оправданный вид деятельности.

В современных же условиях достаточно отчетливо обнаруживается односторонность этой позиции, как и вообще бессмысленность обсуждения вопроса о том, является ли наука изначально невинной или изначально греховной.

К сказанному стоит еще добавить, что сам прогресс науки расширяет диапазон таких проблемных ситуаций, в которых нравственный опыт, накопленный учеными, да и всем человечеством, оказывается недостаточным.

С особой остротой, например, встал вопрос об определении момента смерти донора в связи с успехами экспериментов по пересадке сердца и других органов.
Этот же вопрос возникает и тогда, когда у необратимо коматозного (т.е. навсегда утратившего сознание) пациента с помощью технических средств поддерживается дыхание и сердцебиение.

Так, в США после ряда случаев отключения с согласия родителей жизнеподдерживающих устройств у обреченных детей этим вопросом занялась Президентская комиссия по изучению этических проблем в медицине, биомедицинских и поведенческих исследованиях. Комиссия пришла к выводу, что пациентов, находящихся в постоянном коматозном состоянии, нельзя считать мертвыми. Она определила смерть как необратимое прекращение кровообращения или дыхания, либо необратимое прекращение все функций мозга, рекомендовав всем штатам принять соответствующие единообразные законы. Ныне, под воздействием экспериментов с человеческими эмбрионами, столь же острым становится вопрос о том, с какого момента эмбрионального (или же постэмбрионального) развития развивающееся существо следует считать ребенком со всеми вытекающими отсюда последствиями.

5. ОБЪЕКТИВНАЯ ЛОГИКА РАЗВИТИЯ НАУКИ И ОТВЕТСТВЕННОСТЬ УЧЕНОГО

То или иное толкование проблем социальной ответственности ученых, проявляющееся в острых дискуссиях на эту тему, в решающей мере определяется пониманием науки и научного познания.

— Наука, например, может рассматриваться только как сложившаяся к данному моменту система соответствующим образом обоснованных знаний без учета всех тех человеческих и социальных взаимодействий, в которые вступают люди по поводу этих знаний.

В таком случае отдельный ученый выступает лишь как безликий агент, через посредство которого действует объективная логика развития науки. Этот агент — познающий субъект — осуществляет познавательное отношение к действительности, что предполагает с его стороны «чистое», совершенно не заинтересованное и бесстрастное изучение познаваемого объекта. Всякое же проявление личностных, субъективных качеств исследования понимается при этом исключительно как источник помех и ошибок.

Дело, однако, в том, что понятие «чистого» познавательного отношения является абстракцией, позволяющей решать определенный круг позна-
вательных и методологических задач, но, как и всякая абстракция, может давать лишь одностороннее представление о рассматриваемом объекте. Смысл этой абстракции и состоит в том, что она позволяет при анализе познавательной деятельности отвлечься от ценностных, и в том числе от этических моментов этой деятельности.

Благодаря этому, мы получаем относительно чистую и упрощенную картину науки, которую можно сравнить с проекцией объемной фигуры на плоскость. Известный методолог науки И. Лакатос в подобных случаях применял более резкое выражение — он говорил о том, что рациональные реконструкции истории науки часто являются карикатурой реальной истории науки.

Если, однако, абстракция познавательного отношения начинает применяться за пределами сферы своей обоснованности, если эта абстракция фактически мыслится как выражение специфики научного познания, то мы, естественно лишаемся основания апеллировать при рассмотрении науки к нравственным критериям.

Очевидно, что при таком понимании науки вопрос о социальной ответственности ученого в значительной степени снимается — место социальной ответственности занимает та самая объективная логика развития науки, т.е. развертывания безличного познавательного отношения.

Эта логика — которая, заметим, на деле всегда реконструируется задним числом — оказывается неким неумолимым и слепым механизмом, однозначно детерминирующим познавательную деятельность ученого. На нее, а не на него, в таком случае возлагается и вся социальная ответственность.

Сказанное не следует понимать как отрицание того, что процесс развития науки обладает своей внутренней логикой или того, что получение объективного знания о мире является одной из главных ценностей, ориентирующих познавательную деятельность ученого. Речь идет о том, что эта логика реализуется не вне ученого, не где-то над ним, а именно в его деятельности.

Каждое значительное научное достижение, как правило, открывает целый спектр новых путей исследования, о которых до него едва ли можно было догадываться — стало быть, логика развития науки не так прямолинейна и очевидна, и уж во всяком случае она не является однозначной. Она задает предпосылки и условия протекания творческой деятельности ученого, но никоим образом не отменяет последней. В
конце концов, научное знание порождается вполне конкретной научной деятельностью, которую осуществляют реальные исследователи и исследовательские коллективы. А эта деятельность, будучи деятельностью человеческой, является тем самым и объектом этической оценки.

Дилемма «объективная логика развития науки или социальная ответственность ученого» оказывается некорректно поставленной — ни один из членов этой оппозиции не отменяет другого.

Аргументы, с помощью которых они противопоставляются друг другу и на место социальной ответственности ставится объективная логика, при всей их видимой естественности опираются не столько на само по себе объективное положение дел, сколько на определенное — и притом, как мы видели, одностороннее — истолкование науки и научного познания.

Но тем самым теряют убедительность и основанные на этой оппозиции расхожие доводы такого, например, характера: «Если этого не сделаю я, то сделает кто-то другой» — ведь если все-таки это сделаю я, то именно я (а не объективная логика и не кто-то другой) буду и ответственным за это. Характерно, кстати, что подобные доводы едва ли будут считены оправданием в том случае, когда речь идет об ошибках в методике проведения эксперимента или в доказательстве.

Конечно же, всегда существует возможность ошибок. Это, однако, не освобождает от критики того, кто совершает ошибку.

Более того, нормы, которые функционируют внутри научного сообщества и определяют профессиональные взаимоотношения между учеными, идут в этом смысле еще дальше.

Процитируем в этой связи американских социологов Т. Парсонса и Н. Сторера: «Говорится, что «ученый — это человек, проявляющий склонный интерес к работе соседа». Отсюда вытекает также полная личная ответственность, лежащая на каждом ученом: он не может оправдать ошибку в своей работе, сославшись на то, что позаимствовал ее у другого, поскольку с самого начала он должен был быть скептически настроен по отношению к чужой работе».

6. СОЦИАЛЬНЫЕ СИЛЫ И ОТВЕТСТВЕННОСТЬ УЧЕНОГО

В современных дискуссиях по проблеме социальной ответственности часто встречается и другая дилемма. В этом случае место объективной логики занимают столь же аномные социальные силы.
Утверждается, что наука сама по себе этически нейтральна, а анти-гуманное использование ее достижений целиком и полностью обусловлено теми социальными силами, которые контролируют практическое применение результатов научных исследований.

Интересно, отметить, что в тех случаях, когда речь идет о позитивных последствиях использования научных достижений, проводить такую линию рассуждений частенько забывают — здесь-то уже ответственной оказывается именно наука и только наука.

Конечно, в значительной мере эта аргументация справедлива — однако и в этом случае вопрос о социальной ответственности науки и ученого нельзя сбрасывать со счетов.

Верно, конечно, что достижения могут использоваться и подчас действительно используются в антигуманных целях. Но из этого отнюдь не следует, что с ученого снимается всякая ответственность за то, каким образом и кому служат результаты его исследований.

Отрицание ответственности науки перед обществом, как и ответственности ученого, фактически оборачивается пособничеством этим силам. Тот, кто отказывается рассматривать вопрос о социальной ответственности, ссылаясь на действие анонимных социальных сил, не в состоянии тем самым переложить бремя нравственного выбора и ответственности за выбор на эти силы — ведь самим своим отказом он уже производит выбор, и этот-то акт выбора и подлежит этической оценке.

В конечном счете, каждый научный результат независимо от того, какое практическое применение он получает — представляет собой индивидуальный вклад конкретного ученого, вклад конкретного коллектива, да и сами социальные силы действуют через посредство конкретных людей.

Здесь полезно будет вспомнить о том, что Нюрнбергский трибунал, как известно, признал ответственными тех врачей и ученых, которые «во имя прогресса науки» проводили бесчеловечные эксперименты над узниками гитлеровских концлагерей. Не освободило их от ответственности и то, что они называли себя только орудием в руках нацистского режима.

Разумеется, в данном случае, речь шла о юридической, а не моральной ответственности — но значит ли это, что их эксперименты были нейтральными с этической точки зрения?

Стоит обратить внимание на то, что и при таком подходе познавательный момент в научной деятельности обособляется от ценностно-
этических моментов и противопоставляется им, хотя здесь больше подчеркивается инструментальная, а не собственно познавательная сторона научного знания.

Результатом же — если эту линию рассуждений провести последовательно — оказывается то, что научная деятельность выступает как деятельность несамостоятельная, служебная, вторичная. Что касается ученого, то в этой ситуации он не может быть ответственной и суверенной в своих действиях личностью, а превращается в интеллектуальное орудие функционера и пособника социальных сил.

Впрочем, до такого вывода сторонники этой позиции обычно не доходят, поскольку он вступает в очевидное противоречие не только с внешней, но и с внутренней этикой науки. Действительно, статус и авторитет ученого в пределах научного сообщества определяется, прежде всего, именно его личным вкладом в развитие той или иной научной дисциплины — он, таким образом, оказывается ответственным за то, что им сделано. И эта норма является мощным стимулом в деятельности ученого.

Итак, мы можем сделать вывод:

в оппозиции «социальные силы или ответственность ученого» оба ее члена не исключают друг друга.

И в этом случае их резкое противопоставление опирается на вполне определенное — и опять-таки одностороннее — истолкование науки и научного познания.

Говоря об этом, необходимо подчеркнуть, что мы не имеем ни осно- ваний, ни намерения абсолютизировать или считать всемогущим чувство социальной ответственности ученых — ведь такая абсолютизация была бы чревата той же самой односторонностью. Речь идет лишь о том, чтобы показать, что социальная ответственность представляет собой одну из неотъемлемых сторон мира науки.

В этой связи можно привести слова одного из ведущих отечественных биологов В. А. Энгельгардта. «Нет сомнения, — пишет он, — что в случае глобальных проблем, кризисов ученным не раз придется обращаться к своей совести, призывать чувство ответственности, чтобы найти правильный путь преодоления возникающих угроз. И, разумеется, дело общественной совести ученых мира, общей ответственности — всемерно бороться с причинами, вызывающими вредные, губительные последствия, направлять научные поиски на исправление вреда, который сама наука, не взвесив и не учтя возможных последствий, могла принести, и тем самым
оказаться причастной к возникновению тех или иных глобальных проблем».

7. ДОЛЖНА ЛИ ОГРАНИЧИВАТЬСЯ СВОБОДА ИССЛЕДОВАНИЙ?

В дискуссиях по проблемам социальной ответственности ученых нередко высказывается мнение о том, что вопрос о социальной ответственности касается только прикладных исследований и не распространяется на исследования фундаментальные.

Вот доводы, приводимые в пользу такой точки зрения:
— во-первых, результаты, а тем более возможные области практического приложения фундаментальных исследований непредсказуемы;
— во-вторых, всякое вмешательство, затрагивающее их направление и методы, нарушает принцип свободы исследований.

Один из сторонников этой позиции — американский биохимик Э.Чейн писал:
«Прежде всего я утверждаю, что наука, поскольку она ограничивается... изучением законов природы, не имеет морального или этического качества. Моральные и этические трудности, вопросы о том, что правильно или неверно, возникают только тогда, когда научное исследование ставит задачу воздействия на природу, а эта задача, конечно, встает после описания природы, главной цели науки. В обсуждении моральных проблем...мы поэтому имеем дело не с описательной, а с прикладной наукой».

Такая трактовка науки как всего лишь описания природы выглядит сегодня устаревшей. И вполне резонно английский философ А.Белей характеризует ее как сверхупрощенную, «поскольку ученые не могут проводить изучение законов природы, в то же самое время не воздействуя на природу». Ученые активно манипулируя как с неорганическим, так и с органическим веществом. «И эта деятельность, пусть даже она будет сколь угодно чистой... может требовать моральной оценки».

Что можно сказать в этой связи?

Действительно, результаты и приложения фундаментальных исследований очень часто непредсказуемы. Тем не менее мы с большой долей уверенности можем предполагать, что результаты сегодняшних фундаментальных исследований довольно быстро найдут самые разнообразные применения, причем эти применения, скорее всего, не обязательно будут лишены негативных сторон.
И хотя ученые могут не знать, каковы будут практические последствия того или иного открытия, они слишком хорошо знают, что «знание — сила», и притом не всегда добрая, а потому должны стремиться к тому, чтобы предвидеть, что принесет человечеству и обществу то или иное открытие. Ведь при наличии такого стремления больше шансов своевременно распознать возможные нежелательные эффекты.

Что касается вопроса о свободе исследования, то здесь прежде всего необходимо отметить следующее.

Хорошо известно, что современные фундаментальные исследования, как правило, требуют совместного труда больших научных коллективов и сопряжены со значительными материальными затратами. Уже одно это — хотим мы того или не хотим — накладывает неизбежные ограничения на свободу исследования.

Но не менее существенно и то, что нынешняя наука — вполне сформировавшийся и достаточно зрелый социальный институт, оказывающий серьезное воздействие на жизнь общества. Поэтому идея неограниченной свободы исследования, некогда бывшая прогрессивной, ныне уже не может приниматься безоговорочно, без учета той социальной ответственности, с которой должна быть неразрывно связана эта свобода.

И еще одно принципиальное обстоятельство — само противопоставление свободы исследования как требования, идущего изнутри научной деятельности, и социальной ответственности как того, что налагается на эту деятельность извне опирается на чрезмерно узкое понимание научной деятельности, ее мотивов и способов ее осуществления.

Конечно, наука есть поиск истины. Но это именно искание, процесс, требующий усилий, а не созерцание где-то вне мира бытующей истины. Потому и путь к истине есть наука, но вместе с тем и человеческая деятельность, которую осуществляет человек, как целое, а не те или иные абстрагированные от него способности или интересы.

Вопрос о свободе исследований, о том, как она должна пониматься, был одним из центральных в ходе дискуссий вокруг экспериментов с рекомбинантной ДНК. По этому вопросу высказывались самые разные точки зрения. Наряду с защитой абсолютно ничем не ограничиваемой свободы исследований была представлена и диаметрально противоположная точка
зрения — предлагалось регулировать науку так же, как регулируются железнодорожные дороги.

Между этими крайними позициями находится широкий диапазон мнений о возможности и желательности регулирования исследований, о том, кому должно принадлежать здесь решающее слово — самому исследователю, научному сообществу или обществу в целом.

Так, на взгляд американского биолога Р.Синшеймера, ныне существуют такие области исследований, которые обладают «сомнительными достоинствами», так что их вообще лучше было бы не развивать с точки зрения будущего человечества.

К их числу Р.Синшеймер относит:
— работы по лазерному разделению изотопов, которое может сделать ядерное оружие легкодоступным для террористов;
— попытки установить контакты с внеземными цивилизациями, поскольку контакт с более развитой цивилизацией, чем земная, может оказать разрушительное воздействие на наши системы ценностей;
— исследования в области геронтологии, результатом которых может стать значительное постарение населения и вообще перенаселенность нашей планеты.

По мнению Р.Синшеймера, развитие науки до сих пор опиралось на скрытую предпосылку — веру в то, что природа достаточно эластична и благожелательна по отношению к нашим попыткам ее исследования и ана томирования, что мы не сможем разрушить некоторые ключевые элементы защищающей нас среды, нашу экологическую нишу.

Ныне, считает он, эта предпосылка должна быть поставлена под сомнение и пересмотрена.

Рассматривая общеизвестный тезис о непредсказуемости результатов исследований, Р.Синшеймер высказал интересную мысль о том, что эта непредсказуемость — «не абсолют, а количественная и качественная переменная».

Многими, однако, точка зрения Р.Синшеймера встречается критически. Отмечается, например, что запрет исследований в названных им трех областях заставил бы отказаться от проведения чрезвычайно большого количества исследований, так или
иначе связанных с ними. Высказывалась и мысль о необходимости пере-
смотреть неявное соглашение между обществом в целом и научным сообще-
ством, занятным в биомедицинских исследованиях.

В дальнейшем эта мысль начинает встречаться все чаще — свобода исследований рассматривается не как абсолютное право, а как своего рода контракт, соглашение между учеными и обществом, причем условия этого контракта могут подвергаться пересмотру в связи с изменениями общей ситуации.

Таким образом, вопрос о свободе исследований и о тех обязательствах, которые в этой связи налагаются на ученых — это вопрос, который весьма далек от окончательного решения, и в настоящее время здесь едва ли уместны какие-либо категорические заключения.

Имея в виду дебаты об исследованиях с рекомбинантной ДНК, американский историк науки Дж.Холтон задается вопросом:

действительно ли мы имеем здесь дело с серьезным вызовом, а не просто с чрезвычайно ярким, но краткосрочным возбуждением?

«Ответом, — продолжает Дж.Холтон, — будет четкое "да". ... Мы только начали сталкиваться с такого рода проблемами. Ибо нравится это нам или нет, диспуты относительно мудрости или опасности наложения "пределов на научное исследование" могут оказаться неизбежными, а возможно, они даже и запоздали. В зависимости от конкретных ситуаций, требующих внимания, интенсивность дискуссий может возрастать или убывать; но они имеют некоторый предопределенный характер, и в зрелой форме будут сопровождать нас в грядущие времена».

Дж.Холтон отмечает далее, что фактически ученые сегодня готовы заботиться об этосе и практике науки, включая необходимые защитные пределы и ограничения. Сегодня следует признать, что в науке действует немало внутренних и внешних ограничений, многие из которых неизбежны и, более того, существенны для ее развития.

(492)

К примеру, считается само собой разумеющимся, что
— количественные результаты, там где их можно получить, предпо-
почтительнее качественных;
— операционные определения предпочтительнее метафизиче-
ских;
— важные эксперименты требуют повторения;
— следует искать связи теории с практикой и т.д.
Существует немало и внешних ограничений, которые принимаются учеными как нечто вполне естественное — к примеру, те ограничения, которые связаны с экспериментированием на людях.

Все это показывает, что само существование и развитие науки сегодня попросту невозможно без тех или иных форм и норм регулирования исследований и вообще научной деятельности.
ИМЕННОЙ УКАЗАТЕЛЬ

Аверроэс (Ибн Рушд) 50
Авиценна (Ибн Сина) 50
Агасси Дж. 361, 363
Адамс Дж. 168, 200, 253
Альберт Г. 315, 317
Анвиль Ж. Б. 344
Аполлоний 54
Аристотель 50, 54, 103, 196, 259, 274, 351, 472
Аристарх Самосский 267
Аркрайт Р. 456
Архимед 54
Ачесон Д. 63
Байор Г. 79
Балтимор Д. 480
Барбур Я. 79-81, 87, 95, 98
Баррет Ч. 90
Барт Э. 373, 374
Бахтин М.М. 53-55, 103, 238
Башляр Г. 360
Бейеринк М. 245
Белл Д. 66-69, 75
Белси А. 489
Берт П. 479
Беркли Дж. 305, 351
Бернал Д.ж. 38, 307
Бернунли — семья выдающихся швейцарских ученых: Бернунли Якоб, Бернунли Иоганн, Бернунли Даниил 30
Бертло П. 305
Бессель К. 29
Бетховен Л. 13, 35
Бисмарк О. 143
Блок М. 23, 341
Бойль Р. 446, 447, 452
Бокль Г. 335, 393
Больцман Л. 34, 35, 106, 121
Больяи Ф. 262, 263

(494)

Больяи Я. 255, 261, 262, 267
Бонди Г. 209
Бор Н. 12, 55, 98, 103, 129, 130, 282, 354, 439, 443
Борн М. 19, 25, 34
Борхес Х. 10
Браге Т. 257, 258, 361
Брадвардин Т. 41
Брауэр Л. 10, 103
Братранек Т. 271
Бриллюэйн Л. 134
Бруно Д. 398
Брэгт У. Л. 28
Буль Дж. 113
Бунге М. 304
Бутлеров А.Н. 335
Бэкон Р. 41
Бэкон Ф. 37, 156, 172-175, 179, 183, 257, 305, 358, 451
Вальдземюллер М. 346
Ван-дер-Варден Б. 53, 333
Васко да Гама 344
Вебер М. 460
Вегенер А. 224-226
Везалий А. 433
Вейцзекер К.-Ф. фон 466
Берн Ж. 32
Вернадский В.И. 34, 66, 103, 225, 345
Веспуччи Америго 346, 347
Вигнер Ю. 22
Вильсон Ч. 129, 135
Винер Н. 34, 103, 482
Вирхов Р. 247
Витгенштейн Л. 114, 118, 315, 353
Воронцов Н.Н. 239
Выготский Л.С. 103

Галилей Г. 18, 20, 34, 41, 103, 148, 184, 185, 231, 242, 337, 351, 354, 361, 398, 450
Галле И. 221
Галуа Э. 202, 203
Гамильтон У. 243
Гарвей У. 456
Гаусс К.Ф 29, 255, 261, 267
Гегель Г. 103, 115, 271, 358
Гедель К. 103
Гейгер Х. 129, 135
Гейзенберг В. 26, 34, 55, 141, 203, 211, 282, 355, 443, 466
Геккель Э. 215, 216
Гексли Т. 36
Гельмгольц Г. 104, 106, 305
Гемпель К. 150-153, 155, 163, 165-167
Гендерсон Ч. 82, 100
Гербер У. 91
Гербарт И. 273
Герлак Г. 363
Герц Г. 30, 106
Гете И. 271
Гийом Г. 211, 212
Гильберт Д. 34, 103, 113, 304
Гилки Л. 85, 86
Гинзбург В.Л. 242
Гитлер А. 443
Гоббс Т. 352
Гроссет Р. 41
Грэхем Л. 459, 461
Грю Н. 241
Гук Р. 52, 229, 231, 241, 405, 446
Гумбольдт В. 34, 103
Гюйгенс Х. 41

Д'Аламбер Ж. 30
Дальтон Д. 149
Дарвин Ч. 14, 27, 55, 86, 103, 106, 121, 193, 198, 199, 223, 235, 236, 239, 254, 255, 271, 272
Девис В.М. 223, 234-236, 240
Дейль ван ден 51
Декандоль А. 335
Декарт Р. 81, 103, 149, 175-179, 182, 183, 254, 303, 358, 398
Демокрит 149,211,219,274
Джемс У. 55
Джоуль Дж. 204
Джохансон Д. 247
Дидро Д. 30
Дильтей В. 159, 163, 164, 313
Дирк П. 222, 340
Дойель Л. 243
Докучаев В.В. 224
Дома А. 366
Дорфман Я.Г. 232
Дюгем П. 109-112, 389, 394-398
Дюма Ж. 348
Евклид 11, 18, 183,213,253, 260-262, 264-266, 302
Жолио-Кюри Ф. 64

Заболотский Н.А. 79
Зебергс В. 248
Зенон Элейский 11

Ианнуарий 78
Ивановский Д.И. 245, 249, 250
Иллиес И. 91
Иоанн Павел II (К.Войтыла) 99
Кавендиш Г. 231
Кант И. 115, 261, 266, 295, 351, 352, 358, 469
Капица П.Л. 61
Карнап Р. 115-117, 119, 185, 186
Карно Л. 38
Кейнс Дж. 103
Кеплер И. 41, 54, 121, 156, 361
Кеппен В.П. 224
Кетле А. 269, 272
Клайн М. 304
Клаузиус Р. 210
Клацель М. 271
Клэрро А. 30
Кнорр-Цеттина К. 380-382
Койре А. 49, 337, 363, 364, 374, 375, 378, 397-399, 415
Коллингвуд Р. 350-352
Колумб Х. 55, 246, 342, 344-347, 354, 355
Конт О. 64, 108, 109, 112, 145, 146, 150, 158, 273, 382, 389, 390, 391, 392, 393

(495)

Коперник Н. 29, 34, 103, 121, 193, 204, 253, 257-259, 267, 361, 396, 450
Корренс К. 255, 431
Кржижковский П. 271
Кроуфорд О. 249
Кромби А. 363
Куайн У. 353, 354, 355
Кулон Ш. 227-233
Кэри У. 224, 225, 226
Кюнг Г. 98
Лависс Э. 335
Лавуазье А. 193, 204
Лагранж Ж. 30, 133, 233, 243
Лайель Ч. 236
Лакатос И. 197, 198, 200, 201, 314, 316, 317, 361, 385, 404-406, 484
Ламарк Ж. 13
Ламберт И. 266
Ланжевен П. 107
Лаплас П. 81, 198, 233
Лармор Дж. 107
Ларошфуко Ф. де 25
Лаудан Л. 316
Лауэ М. фош 35
Левенгук А. ван 241
Леверье У. 168, 200, 253
Левинсон-Лессинг Ф.Ю. 241, 242 \nЛейбниц Г.В. 32, 183, 184, 303, 351, 352
Ленц Э.Х. 204
Леонардо да Винчи 395
Либих Ю. 42, 60, 327
Ливингстон Д. 222
Лившиц И.Г. 246
Лилли С. 363
Липсон Г. 230
Лобачевский Н.И. 183, 254, 255, 261, 262, 267
Ломоносов М.В. 354
Лоренц Х. 106, 107
Лункевич В.В. 241
Лысенко Т.Д. 62
Льоццци М. 232, 233 Льюис Г. 26 Лютер М. 258
Магидович И.П. 342, 346
Майкельсон А. 182
Максвелл Дж. 34, 54, 106, 121
Малей М. 417
Мальпиги М. 241
Мальтус Т. 55
Мария Терезия 272
Марковников В.В. 335
Маркс К. 103, 282, 470
Мах Э. 108, 109, 111, 112, 146, 149, 159, 160, 389, 393-395
Менделеев Д.И. 34, 103, 121, 349, 431
Менделль Г. 29, 254, 268-273, 431
Меркатор Г. 347
Мертон Р. 156, 363, 364, 376-379, 381, 474, 475
Милль Дж. 150, 155
Михайловский Н.К. 307
Морган Л. 247
Моргенштерн О. 22
Мопертюи П. 30
Наполеон I 36, 247
Найт Т. 268
Напп Ф.Ц. 270
Нейман Дж. фон 22
Нидам Дж. 43, 48, 49, 363, 364
Ноден Ш. 268, 269
Ньюкомен Т. 456
Ньютон И. 14, 26, 41, 53, 54, 81, 103, 121, 133, 140, 149, 160, 193, 196, 198, 204, 233, 243, 254, 333, 337, 351, 358, 361, 371, 393, 405, 431, 438, 439
Одоевский В. 181
Ом Г. 204
Оппенгейм П. 151, 152, 165-167
Оппенгеймер Р. 63
Оствальд В. 149
Павлов И.П. 17
Парсонс Т. 430, 458, 486
Пассмор Дж. 341
Пастер Л. 60, 225, 226
Паули В. 19, 219
Пеано Дж. 113
Пикок А. 83, 94, 95, 97
Пирс Т. 417, 418-420, 422
Пирсон К. 109
Пифагор 30, 54, 103, 208, 274
Планк М. 27, 29, 30, 34
Платон 50, 54, 115, 211, 246, 352
Полани М. 208
Поппер К. 10, 12, 123, 150, 152, 153, 155, 181, 186-191, 193, 227, 314, 361, 376, 377, 407
Поттер Ф. 79, 80
Пригожин И. 103
Пристли Дж. 231
Пропп В.Я. 55
Птолемей К. 50, 257, 259
Пуанкаре А. 17, 34, 103, 126, 255
Пуассон Л. 233
Пушкин А. 246, 448
Рамбо А. 335
Рандалл Л. 26
Ранке Л. фон 351
Рассел Б. 16, 64, 98, 113, 114, 118, 180
Рей А. 107
Рейхенбах X. 120, 121, 185
Риббер Г. 248
Риккерт Г. 313
Рипли Дж. 348
Робеспьер М. 36
Ролстон Х. 95-97, 99
Рузвельт Ф.Д. 60
Рэнделл Дж. 363

Садбери А. 239
Сажрэ О. 268
Саккери Дж. 266
Сахаров А.Д. 64
Саломон Ж. 64
Сартон Дж. 366, 401, 406
Сен-Симон К.А. 390-393
Сеченов И.М. 34
Синше́ймер Р. 491
Склодовская-Кюри М. 28
Смит А. 103
Скирбекк Г. 473
Сноу Ч. 458
Сократ 477
Солон 47
Сорокин П.А. 103
Соссюр Ф. 103
Спасский Б. 229
Спенсер Г. 391
Спиноза Б. 303
Стеклов В.А. 304
Стефенсон Дж. 456
Сторер Н. 458, 486
Струве О. 248
Стэ́нсбей Д. 85, 86
Татон Р. 366
Телнер Р. 416, 417
Тимирязев К.А. 106
Тимофеев-Ресовский Н.В. 239, 443
Тимошенко СП. 227, 229, 232
Тиллих П. 98
Тойнби А. 103, 415
Толстой Л. 13
Томсон, лорд Кельвин У. 31
Тосканелли П. 343, 344
Тоффлер А. 73-75
Трайбус М. 210
Трумэн Г. 63
Туорт Ф. 245
Уайтхед А. 113, 195, 377
Уатт Дж. 67, 456
Унгер Ф. 268
Уоллес А. 255
Уэвелл В. 335
Фалес 11, 260, 351, 354, 355
Фараби А. 50
Фейерабенд П. 316-320
Фейнман Р. 210
Филидор Ф. 106
Фишер К. 104
Фома Аквинский 115
Фонтен 30
Франк Ф. 187
Фреге Г. 113
Фрейд З. 103
Фриз де Х. 255, 431

Фром Э. 32, 33
Фуко М. 316
Фурье Ш. 255
Хабермас Ю. 316
Хайярд А. 85
Хартихорн Ч. 95
Хеллер М. 84
Ходж П. 242
Холл Р. 363, 364
Холтон Дж. 492
Хомский Н. 223
Цильзель Э. 47, 48, 363
Чайковский Ю.В. 304
Чейн Э. 489
Чермак Э. 255, 431
Шампольон Ж. 246
Шекспир У. 54, 282
Шеллинг Ф. 103, 104, 115
Шиллер Ф. 35
Шлейден М. 305
Шлейермахер Ф. 159, 164
Шлейхер А. 239
Шлик М. 24, 114, 117, 118
Шпенглер О. 415
Шпиннер X. 314, 315, 317, 320
Шредингер Э. 34
Шумахер Г. 103

Эврипид 65
Эддингтон Ф. 150
Эйлер Л. 149, 233, 243
Эйнштейн А. 11, 14, 18, 34, 60, 62, 64, 65, 94, 97, 103, 121-123, 129, 130, 131, 134, 149, 156, 182, 193, 238, 251, 253-255, 336, 359, 431
Энгельгардт В.А. 488
Эпикур Ф. 231
Эрель де Ф. 245
Юм Д. 305
Яблоков А.В. 239
Якобсон Р.О. 181, 182
Яначек Л. 271
Янский К. 248, 249
Ярхо Б.И. 215
Ясперс К. 24, 57
ПЕРСОНАЛИИ

АВЕРРОЭС (ИБН РУШД) (1126-1198)
— арабский философ и врач, автор энциклопедического медицинского труда, известный комментатор Аристотеля.

АВИЦЕННА (ИБН СИНА) (980-1037)
— ученый, философ, врач, обладал энциклопедическими знаниями, его главный научно-философский труд «Книга исцеления» и медицинская энциклопедия «Канон врачебной науки» оказали большое влияние на развитие мировой культуры.

АДАМС ДЖ. (1819-1892)
— английский астроном, открывший в 1845 г. на основании математических расчетов планету Нептун.

АЛЬБЕРТ X. (1921)
— немецкий философ, социолог и экономист, один из ведущих представителей критического рационализма.

АРИСТОТЕЛЬ (384-322 до н.э.)
— древнегреческий философ и ученый-энциклопедист, в своих работах охватывший почти все известные в то время области знания; его идеи, относящиеся к философии, логике, физике, биологии, теории искусства, риторике, наукам о социально-политической и экономической жизни общества, оказали огромное влияние на развитие мировой философии и науки.

АРКРАЙТ Р. (1732-1792)
— английский предприниматель в области текстильной промышленности, первым в Англии построил прядильные фабрики с водяными двигателями; присвоив изобретенную английским механиком Т.Хайсом механическую прядильную машину, получил на нее патент.

(499)
АРХИМЕД (ок. 287-212 до н.э.)
— древнегреческий ученый, математик и механик, впервые применивший методы нахождения площадей поверхностей и объемов различных фигур и тел, представлявшие собой зачатки дифференциального и интегрального исчислений; пионер математической физики; один из создателей механики; изобретатель.

БАЛТИМОР Д. (1938)
— американский биохимик, лауреат Нобелевской премии (1975).

БАРБУР Я.
— современный американский ученый и теолог; профессор физики и профессор религии; специалист по проблематике «религия и наука», автор многочисленных работ по этой теме — «Мифы, модели и парадигмы» (1975), «Религия в век науки» (1990) и др.

БАХТИН М.М. (1895-1975)
— отечественный литературвед, культуролог, широко известный своими работами о творчестве Ф.М.Достоевского, Л.Н.Толстого, Ф.Рабле, исследованиями по теории литературы.

БАШЛЯР Г. (1884-1962)
— французский философ, специалист в области методологии науки, один из основоположников неорационализма; стремился философски осмыслить особенности современного естествознания; считал, что развитие знания проходит три этапа: донуальный — господство чистого эмпиризма, научный — возникновение рационального абстрактного мышления, неклассической науки — для которого характерны отказ от окончательной истины, готовность к опровержениям, синтезирующая способность к обобщению новых эмпирических данных, установление новых связей между различными формами, структурами и областями знания.

БЕЙЕРИНК М. (1851-1931)
— голландский ботаник-микробиолог, исследовал развитие высших растений, жизнедеятельность микроорganизмов, роль бактерий в круговороте веществ в природе.
БЕЛЛ Д. (1919)
— американский социолог, специалист в области истории общественной мысли, политических течений и социального прогнозирования; широко известна разработанная им концепция стиндустриального общества.

БЕРГ П. (1926)
— американский биохимик, лауреат Нобелевской премии (1980).

БЕРКЛИ ДЖ. (1685-1753)
— английский философ, с 1734 г. епископ в Клойне (Ирландия), развивал концепцию субъективного идеализма; известен своей резкой критикой материализма, учения И.Ньютона о пространстве и его трактовки бесконечно малых величин.

БЕРНАЛ ДЖ. (1901-1971)
— английский физик, социолог науки, общественный деятель, один из основателей науковедения.

БЕРНУЛЛИ
— семья выдающихся швейцарских ученых: Бернулли Якоб (1654—1705), Бернулли Иоганн (1667—1748), Бернулли Даниил (1700-1782);
— БЕРНАРД Я.
— математик; совместно с братом Иоганном положил начало вариационному исчислению; доказал так называемую теорему Бернулли (важный частный случай закона больших чисел);
— БЕРНАРД И.
— математик, дал первое систематическое изложение дифференциального и интегрального исчислений; осуществил важные исследования в области обыкновенных дифференциальных уравнений, в решении вариационных задач, а также в ряде разделов механики;
— БЕРНАРД Д. (сын Берналли И.)
— математик и механик, занимался также физиологией и медициной; в 1725—1733 гг. работал в Петербурге; разработал ме-
тод численного решения алгебраических уравнений; автор работ по теории рядов, обыкновенным дифференциальным уравнениям, теории ве-
роятностей с приложением к статистике народонаселения и отчасти к аст-
рономии; вывел основное уравнение стационарного движения идеальной
жидкости (уравнение Бернулли); один из первых разрабатывал кинетиче-
ские представления о газах.

БЕРТЛО П. (1827-1907)
— французский химик, историк химии, общественный деятель; син-
тезировал большое количество органических соединений, активо развивал
химическую кинетику, является одним из основоположников термохимии;
страстно выступал против витализма; автор труда «Происхождение алхимии»; в 1876 г. он был назначен генеральным инспектором высшего обра-
зования, а в 1886—1887 г. г. — он министр народного просвещения.

БИСМАРК О. (1815-1898)
— германский государственный деятель, князь; с 1862 г. министр-
президент и министр иностранных дел Пруссии; в результате датской вой-
ны 1864 г., австро-прусской войны 1866 г. и франко-прусской войны
1870—1871 гг. осуществил объединение Германии; в 1871—1890 г. рейх-
сканцлер Германской империи.

БЛОК М. (1886-1944)
— французский историк; дал глубокое описание западноевропейског
го феодализма как целостной социальной системы; в 1929 г. совместно с
Л. Февром основал и возглавил журнал «Анналы экономической и соци-
альной истории», в котором активно пропагандировалось широкое исполь-
зование в исторических исследованиях материалов других наук (психоло-
гии, географии, экономики, статистики и пр.), была провозглашена необ-
ходимость методологического обновления исторической науки; «Апologia
истории», написанная им в 1941—1942 г., — одно из наиболее фундамен-
тальных произведений, посвященных проблемам методологии историче-
ского познания; как участник движения Сопротивления был расстрелян
фашистами; на своем могильном камне Блок в завещании просил вырезать:
«Он любил истину».
БОЙЛЬ Р. (1627-1691)
— английский химик и физик, ввел в химию экспериментальный метод, дал первое определение понятия химического элемента, активно содействовал превращению химии в самостоятельную науку; установил зависимость объема одной и той же массы воздуха от давления при неизменной температуре; считал, что все качественное многообразие явлений объяснимо механическими движениями и группировкой неизменных атомов, различающихся «лишь размерами и формой.

БОКЛЬ Г.Т. (1821-1862)
— английский историк и социолог, поставил перед собой цель написать историю человечества, реализуя которую смог написать лишь двухтомную «Историю цивилизации в Англии»; считал, что развитие общества столь же закономерно, как и эволюция природы, а его закономерности могут быть выявлены прежде всего в результате статистического анализа поведения людей; особое внимание обращал на значение для развития общества природных условий, демографических процессов, распределения имущества; верил в безграничную силу науки и просвещения, считая что они представляют главный фактор поступательного движения человечества; отстаивал идею равенства людей, выступал за улучшение жизненных условий трудящихся, эмансипацию женщин, веротерпимость, был пацифистом.

БОЛЬЦМАН Л. (1846-1906)
— австрийский физик, один из основоположников статистической физики и физической кинетики, широко известен своими работами по философии и методологии науки, полемикой против позитивизма; его научная деятельность имела большое значение для утверждения в науке атомистических представлений и вероятностного стиля мышления.

БОЛЬЯИ Я. (1802-1860)
— венгерский математик, один из творцов неевклидовой геометрии, свои исследования в этой области опубликовал в 1832 году, идеи Я. Больяи не получили признания при его жизни.
БОР Н. (1885-1962)
— датский физик, создал первую квантовую теорию атома, один из создателей квантовой механики, внес значительный вклад в развитие теории атомного ядра и ядерных реакций, процессов взаимодействия элементарных частиц со средой, лауреат Нобелевской премии (1922); ему принадлежат большие заслуги в философском истолковании квантовой механики; сформулировал принцип соответствия (1923), согласно которому следствия квантовой механики должны совпадать в предельном случае с результатами классической теории, а также принцип дополнительности, имеющие важное значение для понимания особенностей развития науки; его работы оказали значительное влияние на формирование современного стиля научного мышления.

БОРН М. (1882-1970)
— немецкий физик, один из основателей квантовой механики; совместно с В. Гейзенбергом и П. Иорданом разработал матричную квантовую механику и дал ей статистическое обоснование; им написано большое количество значительных работ по философии и методологии физики; активный участник движения борьбы за мир и демократию; лауреат Нобелевской премии (1922).

БРАГЕ Т. (1546-1601)
— датский астроном, прославившийся своими точными наблюдениями за небесными явлениями, которые он производил систематически в течение 21 года; на основе этих наблюдений И. Кеплер вывел свои знаменитые законы.

БРАУЭР Л. (1881-1966)
— голландский математик, внес фундаментальный вклад в развитие топологии, родоначальник интуиционистского направления в обосновании математики.

БРИЛЛЮЭН Л. (1889-1969)
— французский физик; область исследований — классическая электродинамика, квантовая механика, физика твердого тела, радиофизика, статистическая физика, теория информации, в каждой из которых имеет значительные результаты; показал, что получение информации неизбежно сопровождается возрастанием энтропии какой-либо системы: большое внимание уделял разработке философских и методологических проблем науки.

БРУНО ДЖ. (1548-1600)
— итальянский философ и поэт; считал целью философии познание не сверхприродного бога, а природы, которая является «богом в вещах», активно отстаивал гелиоцентрическую теорию.

Коперника, развивал идеи о бесконечности природы и бесконечном множестве миров во Вселенной, был обвинен в ереси и свободомыслии и сожжен на костре.

БРЭГГ У.Л. (1890-1971)
— английский физик, лауреат Нобелевской премии (1915), получил эту премию вместе со своим отцом У.Г.Брэгтом.

БУЛЬ ДЖ. (1815-1864)
— английский математик и логик, основатель математической логики; его именем названы т.н. булевы алгебры; его дочь Э.Л.Войнич — известная писательница, автор романа «Овод».

БУНГЕ М. (1919)
— аргентинский физик и философ, основная область его исследований — философские проблемы естествознания, проблемы методологии науки.

БУТЛЕРОВ А.Н. (1828-1886)
— русский химик, создатель теории химического строения вещества, основатель русской школы химиков, общественный деятель.
БЭКОН Р. (ок. 1214-1292)
— английский философ и естествоиспытатель, францисканский монах; отвергал схоластику, преклонение перед авторитетами; призывал к опытному изучению природы, широкому использованию математики; целью всех наук считал увеличение власти над природой; развивал идеи о возможности изобретения летательного аппарата, самодвижущихся повозок.

БЭКОН Ф. (1561-1626)
— английский философ, в 1618—1621 гг. лорд-канцлер Англии; развивал материалистическую традицию в истолковании реальности; активный борец против схоластики; обосновывал огромную роль науки не только в познании реальности, но и преобразовании ее в интересах людей; его методология науки, обосновывающая фундаментальное значение опыта и индуктивных обобщений в научном познании, предложенная им классификация наук, идеи об организации научного сообщества были непосредственно восприняты французскими энциклопедистами; его идеи оказали значительное влияние на развитие философии и, особенно, философии и методологии науки.

ВАН-ДЕР-ВАРДЕН Б. (1903)
— голландский математик; основные его работы относятся к алгебре и алгебраической геометрии; его книга «Современная алгебра» (1930—1931 гг.) завершила период создания «общей алгебры»; известен также своими значительными работами по истории математики и астрономии в Древнем Египте и Древнем Вавилоне.

ВАСКО ДА ГАМА (1469-1524)
— португальский мореплаватель, завершивший поиски морского пути из Европы в Индию.

ВЕБЕР М. (1864-1920)
— немецкий социолог, экономист, историк, юрист, философ, основоположник «понимающей социологии» и теории социального действия; его работы оказали большое влияние на становление социологии религии, на
развитие представлений о рациональности и ее воплощении в различных сферах жизни общества.

ВЕГЕНЕР А. (1880-1930)
— немецкий геофизик, основоположник учения о дрейфе континентов.

ВЕЗАЛИЙ А. (1514-1564)
— естествоиспытатель эпохи Возрождения, основоположник научной анатомии; его труд «О строении человеческого тела» (1543 г.), основанный на его собственных исследованиях, стал научной основой современной анатомии.

ВЕРН Ж. (1828-1905)
— французский писатель, один из создателей жанра научно-фантастического романа.

ВЕРНАДСКИЙ В.И. (1863-1945)
— русский естествоиспытатель, минералог и кристаллограф,

основоположник геохимии, биогеохимии, радиогеологии и учения о биосфере, историк науки, общественный деятель; его идеи о роли живого в геохимической эволюции Земли, возрастающем влиянии человека на природу, огромной роли науки в жизни общества, о единстве человечества и необходимости развития нового, планетарного мышления существенно воздействовали на формирование мировоззрения нашей эпохи.

ВЕСПУЧЧИ АМЕРИГО (ок. 1453-1512)
— итальянский мореплаватель, в 1499—1504 гг. участвовал в нескольких экспедициях к берегам Нового Света, в его честь открытый европейцами новый материк в начале XVI в. был назван Америкой.

ВИГНЕР Ю. (1902)
— американский физик-теоретик, одним из первых применил методы теории групп к описанию атомных и ядерных процессов; ему принадлежат
фундаментальные работы по теории рассеяния частиц и теории твердого тела; в 1942—1945 гг. участвовал в разработке первого в мире ядерного реактора (Манхет-тенский проект); лауреат Нобелевской премии (1963) за работы по теории симметрии.

ВИЛЬСОН Ч. (1869-1959)
— английский физик, исследовал конденсацию паров под влиянием различных агентов, в частности быстро летящих электронов; эти работы привели его к созданию в 1912 г. прибора, позволяющего наблюдать треки микрочастиц (камера Вильсона); лауреат Нобелевской премии (1927).

ВИНЕР Н. (1894-1964)
— американский математик, основоположник кибернетики; развивал идеи широкого применения вероятностного и информационного подходов для описания и понимания явлений природы, общества и человека; известен также как автор работ о применении достижений науки и техники в современном обществе, по проблемам обучающихся и самовоспроизводящихся машин, взаимодействия человека и машины, моральной ответственности ученых за последствия использования их достижений; его идеи оказали значительное влияние на мировоззрение второй половины XX столетия.

ВИРХОВ Р. (1821-1902)
— немецкий ученый и политический деятель, основатель современной патологической анатомии, занимался также проблемами антропологии, этнографии и археологии; в последний период своей жизни резко выступал против эволюционного учения Ч. Дарвина; в 1861—1884 гг. был одним из основателей и лидеров Прогрессистской партии, а с 1884 г. стал одним из руководителей Партии свободомыслящих.

ВИТГЕНШТЕЙН Л. (1889-1951)
— австрийский философ и логик, представитель аналитической философии, один из создателей философии логического позитивизма; считал, что проблемы классической философии по сути своей являются бессмысленными и основаны на неправильном понимании логики нашего языка; с его точки зрения философия признается возможной лишь как «критика
языка»; взгляды Витгенштейна оказали значительное влияние на развитие лингвистической философии.

ВЫГОТСКИЙ Л.С. (1896-1934)
— отечественный психолог, разработал культурно-историческую теорию развития психики; различал два плана в поведении человека — натуальный (результат биологической эволюции) и культурный (результата развития общества); суть культурного развития с его точки зрения в его опосредованности орудиями и знаками, причем первые направлены «вовне», на преобразование действительности, а вторые — «вовнутрь», сначала на других людей, а затем — на управление собственным поведением; считал, что сознание — это динамическая смысловая система находящихся в единстве аффективных, волевых и интеллектуальных процессов; оказал значительное влияние на развитие психологии в нашей стране.

ГАЛИЛЕЙ Г. (1564-1642)
— итальянский физик, механик и астроном, музыкант, поэт, филолог и литературный критик, один из основателей современного экспериментально-теоретического естествознания, основатель классической механики; с работ Г.Галилея начинается история динамики; им вполне были осознаны закон инерции, закон сложения скоростей; он первый выдвинул идею об относительности движения (принцип относительности Галилея), изучил за-

коны свободного падения тел и движения их по наклонной плоскости, законы движения тела брошенного под углом к горизонту и др.; построенный им телескоп с 32-кратным увеличением позволил Г.Галилею впервые наблюдать горы и кратеры на поверхности Луны, открыть четыре спутника у Юпитера, увидеть, что Млечный путь состоит из отдельных звезд, понять, что звезды находятся на огромном расстоянии от Земли; его работы имели огромное значение для утверждения в науке учения Н.Коперника, формирования подлинно научной методологии научного исследования, позволяющей, опираясь на эксперимент и теорию, широко используя математику, раскрывать причинную обусловленность всего происходящего в мире.
ГАЛЛЕ И. (1812-1910)
— немецкий астроном-наблюдатель; по координатам, вычисленным У. Леверье, обнаружил планету Нептун (1846).

ГАЛУА Э. (1811-1832)
— французский математик, исследования которого оказали исключительно сильное влияние на развитие алгебры; один из основателей теории групп; входил в тайное республиканское общество «Друзья народа»; в возрасте 21 года был убит на дуэли, по-видимому, спровоцированной его политическими противниками.

ГАМЕЛЬТТОН У. (1805-1865)
— ирландский математик, дал в 1833—1835 гг. точное формальное изложение теории комплексных чисел, построил своеобразную систему чисел, т.н. кватернионов; разработал способ применения вариационного метода для выбора действительного движения механической системы из всех движений, допустимых уравнениями механики.

ГАРВЕЙ У. (1578-1657)
— английский врач, физиолог и эмбриолог, основатель учения о кровообращении и всей современной физиологии и эмбриологии.

ГАУСС К.Ф. (1777-1855)
— немецкий математик, внесший фундаментальный вклад в развитие высшей алгебры, теории чисел, дифференциальной геометрии, теории электричества и магнетизма, геодезии и астрономии; наряду с Н. Лобачевским и Я. Бюльяй, независимо от них, пришел к выводу о возможности построения неевклидовой геометрии.

ГЕДЕЛЬ К. (1906-1978)
— австрийский логик и математик; важнейший его результат — доказательство неполноты достаточно богатых формальных систем (в том числе арифметики натуральных чисел и аксиоматической теории множеств); он показал, что в таких системах имеются правильно построенные
предложения, которые в рамках этих систем не могут быть ни доказаны, ни опровергнуты; теорема Геделя о неполноте была истолкована как утверждение о принципиальной невозможности полной формализации научного знания и имела большое философское значение для понимания природы математики, особенностей процесса познания действительности.

ГЕЙГЕР Х. (1882-1945)
— немецкий физик; совместно с английским физиком Э.Резерфордом изобрел прибор, позволяющий считать отдельные заряженные частицы, в дальнейшем этот прибор был усовершенствован Гейгером и немецким физиком В.Мюллером и получил название счетчик Х.Гейгера — Мюллера.

ГЕЙЗЕНБЕРГ В. (1901-1976)
— немецкий физик, один из создателей квантовой механики; совместно с Н.Бором разработал матричную механику (1925) — первый вариант квантовой механики; сформулировал соотношение неопределенностей (1927), выражающее связь между импульсом и координатой микрочастицы; автор работ по структуре атомного ядра, по релятивистской квантовой механике и единой теории поля; лауреат Нобелевской премии (1932); его многочисленные работы по проблемам философии и методологии науки оказали большое влияние на современное мировоззрение.

ГЕККЕЛЬ Э. (1834-1919)
— немецкий биолог, активный пропагандист эволюционного учения; обосновал биогенетический закон о взаимосвязи онтогенеза и филогенеза.

ГЕКСЛИ Т. (1825-1895)
— английский естествоиспытатель, ближайший соратник Ч.Дарвина и популяризатор его учения; в 1883—1885 гг. — президент Лондонского королевского общества; активный сторонник теории происхождения человека от обезьяны.

ГЕЛЬМГОЛЬЦ Г. (1821-1894)
— немецкий физик, математик, физиолог и психолог; впервые дал математическое обоснование закона сохранения энергии и показал универсальность этого закона; выдвинул идею об атомарном строении электричества.

ГЕРИКЕ О. фон (1602-1686)
— немецкий физик; доказал существование давления воздуха (опыт с «магдебургскими полушариями»), установил его упругость, весомость; изобрел воздушный насос; создал одну из первых электрических машин; впервые построил водяной барометр; был бургомистром Г.Магдебурга.

ГЕРЦ Г. (1857-1894)
— немецкий физик, один из основателей электродинамики; в 1886—1889 гг. экспериментально доказал существование электромагнитных волн и подтвердил выводы теории Максвелла о том, что скорость распространения электромагнитных волн в воздухе равна скорости света, установил тождественность электромагнитных и световых волн; его работы сыграли большую роль в развитии науки и техники, способствовали возникновению беспроволочной телеграфии, радиосвязи и т.д.; именем Г.Герца названа единица частоты колебаний; Г.Герц считал, что вся физика может быть построена на основе принципов механики.

ГИЛЬБЕРТ Д. (1862-1943)
— немецкий математик; его исследования оказали большое влияние на развитие многих разделов математики и математической физики; большое значение имели его труды по основаниям геометрии, ставшие образцом для дальнейших работ по аксиоматизации математики; в исследованиях по основаниям математики им была развита программа формализации, аксиоматизации и доказательства непротиворечивости математического знания; благодаря его исследованиям возник новый раздел математики — метаматематика.

(511)

ГОББС Т. (1588-1679)
— английский философ; считал, что идеальными образцами научного мышления являются геометрия и механика; природа представлялась ему

kupozv_v_i_i_dr_filosofiya_i_metodologiya_nauki
совокупностью протяженных тел, различающихся между собой величиной, фигурой, положением и механическим перемещением; развивал учение о государстве как основанном на общественном договоре

ГРЮ Н. (1641-1712)
— английский ботаник и врач, один из основоположников анатомии растений; в труде «Анатомия растений» (1682 г.) описал микроскопическое строение корня, стебля, листьев, плодов, семян растений.

ГУК Р. (1635-1703)
— английский естествоиспытатель; был секретарем Лондонского королевского общества; установил закон пропорциональности между силой, приложенной к упругому телу, и его деформацией (закон Гука); высказал идею о всемирном тяготении, предвосхитив закон всемирного тяготения Ньютона; считал, что окаменелости — это остатки прежде живущих существ, по которым можно воспроизвести историю Земли; был известным архитектором.

ГУМБОЛЬДТ В. (1767-1835)
— немецкий филолог, философ и языковед, государственный деятель; один из виднейших представителей немецкого классического гуманизма; основоположник философии языка как самостоятельной области исследований; основатель Берлинского университета.

ГЮЙГЕНС Х. (1629-1695)
— нидерландский механик, физик и математик; создатель волновой теории света; изобрел первые маятниковые часы; считал, что во Вселенной существует множество обитаемых миров; первый председатель Французской Академии Наук.

Д'АЛАМБЕР Ж. (1717-1783)
— французский математик и философ; один из основателей математической физики; принимал активное участие в создании французской «Энциклопедии»; впервые сформулировал об-
щие правила составления дифференциальных уравнений движения любых систем, сведя задачи динамики к статике (принцип Д'Аламбера), обосновал теорию возмущения планет, дал метод решения дифференциального уравнения 2-го порядка с частными производными, дал первое доказательство основной теоремы о существовании корня у алгебраического уравнения; писал работы по классификации наук, теории познания, нравственным проблемам, ему принадлежат также работы по вопросам теории музыки и эстетике.

ДАЛЬТОН ДЖ. (1766-1844)
— английский физик и химик; автор основополагающих работ по химической атомистике; им открыты закономерности, которым подчиняются свойства газовых смесей (законы Дальтона); он впервые описал дефект зрения — частичная цветовая слепота — получивший название дальтонизма; его труды имели большое значение для утверждения в науке учения об атомном строении вещества.

ДАРВИН Ч. (1809-1882)
— английский естествоиспытатель, основоположник эволюционного учения о происхождении видов животных и растений путем естественного отбора; дал причинное объяснение целесообразности в органической природе; обосновал происхождение человека от обезьяны; его идеи оказали огромное влияние на развитие многих наук, на мировоззрение XIX века и стали фундаментом современных представлений о реальности.

ДЕКАНДОЛЬ А. (1806-1893)
— швейцарский ботаник; разработал одну из первых естественных систематизации растений; основоположник сравнительной морфологии растений.

ДЕКАРТ Р. (1596-1650)
— французский математик и философ; впервые ввел понятия переменной величины и функции; один из родоначальников аналитической геометрии; ввел так называемые декартовы координаты; развивал дуалистическую философию; отрицал наличие сознания у животных, считая их автоматами; большое внимание уделял проблемам познания реальности и

kupozv_v_i_i_dr_filosofiya_i_metodologiya_nauki
методологии науки; в учении о познании был родоначальником рационализма; впервые

33-475 попытался выяснить сущность «произвольных» и «непроизвольных» движений и описал схему рефлекторных реакций.

ДЕМОКРИТ (ок. 460 - ок. 370 до н.э.)
— древнегреческий философ, один из первых стал развивать учение об атомистическом строении материи; обладал энциклопедическими знаниями; занимался практически всеми известными тогда науками: математикой, физикой, астрономией, медициной и др.

ДЖЕМС У. (1842-1910)
— американский философ и психолог, один из основателей прагматизма; считал, что значение понятий, идей и теорий определяется их практическими последствиями; полагал, что во Вселенной царит случай и в ней постоянно возникает нечто новое; утверждал, что нет такой исходной точки, с которой Вселенную можно было бы охватить и выразить в одной непротиворечивой системе представлений.

ДЖОУЛЬ ДЖ. (1818-1889)
— английский физик; внес значительный вклад в исследование электромагнетизма и тепловых явлений, в создание физики низких температур, в обоснование закона сохранения энергии.

ДИДРО Д. (1713-1784)
— французский философ-просветитель, писатель, организатор и редактор французской «Энциклопедии» (1751—1780); его раннее философское сочинение «Философские мысли» (1746) сожжено по решению французского парламента; развивал материалистическое учение о природе; выказал догадку о биологической эволюции; в понимании природы власти придерживался теории общественного договора; значительное количество его работ посвящено вопросам драматургии, театра, музыки, обсуждению проблем эстетики; большое значение придавал просвещению; его мысли о народном образовании изложены в «Плане университета или школы пуб-
личного преподавания наук для российского правительства», составленном в 1775 г. по просьбе Екатерины II; отстаивал принципы всеобщего бесплатного начального обучения; считал важным изучение физико-математических и естественных наук, выступал за связь образования с потребностями жизни.

(514)

ДИЛЬТЕЙ В. (1833-1911)
— немецкий историк культуры, философ, представитель «философии жизни», создатель «понимающей психологии»; считал задачей философии как «науки о духе» понимание жизни, исходя из нее самой, трактуя жизнь как культурно-исторический феномен; в связи с этим разрабатывал метод понимания, интуитивного проникновения одной «жизни» в другую, которому противопоставлял метод объяснения, применяемый в естественных науках; по отношению к историческому прошлому понимание выступает как метод истолкования отдельных явлений культуры в качестве моментов целостной жизни реконструируемой эпохи.

ДИРАК П. (1902-1984)
— английский физик-теоретик, один из основателей квантовой механики, лауреат Нобелевской премии (1933); построил удовлетворяющую требованиям теории относительности квантово-механическую теорию электрона, на основе которой он предсказал существование позитрона.

ДОКУЧАЕВ В.В. (1846-1903)
— русский естествоиспытатель, основатель современного научного генетического почвоведения и зональной агрономии; его идеи оказали большое влияние на развитие лесоведения, гидрогеологии, динамической геологии и ряда других наук.

ЕВКЛИД (3 в. до н.э.)
— древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике; главная его работа «Начала», в которой содержится изложение планиметрии, стереометрии и ряд вопросов теории чисел, в ней подведен итог развитию греческой математики; изложение геометрии, осуществленное Евклидом, служило на протяжении
тысячелетий образцом логической стройности и строгости научного знан-ия; автор работ по астрономии, оптике, музыке.

ЖОЛИО-КЮРИ Ф. (1900-1958)
— французский физик, общественный деятель; вместе с женой И. Жолио-Кюри обнаружил явление искусственной радиоактивности, за что в 1935 г. им была присуждена Нобелевская премия; предсказал бета-распад нейтрона; много сделал для практического использования атомной энергии; руководил строительством первого французского атомного реактора, пущенного в 1948 г.; в 1946—1950 гг. руководил созданным им Комиссариатом по атомной энергии, в 1940—1944 г. был участником Движения Сопротивления, возглавлял организацию «Национальный фронт», был президентом Всемирной федерации научных работников, председателем Всемирного Совета Мира.

ЗЕНОН ЭЛЕЙСКИЙ (ок. 490-430 до н. э.)
— древнегреческий философ, один из создателей диалектики как искусства постижения истины посредством спора; наибольшую известность приобрели апории Зенона «Ахилл», «Стрела», «Дихотомия», «Стадий», в которых демонстрировались противоречия в отображении движения в наших понятиях.

ИВАНОВСКИЙ Д.И. (1864-1920)
— отечественный физиолог растений и микробиолог, основоположник вирусологии.

ИОАНН ПАВЕЛ II (К.Войтыла) (1920)

КАВЕНДИШ Г. (1731-1810)
— английский физик и химик; ввел в науку понятие электрического потенциала; впервые сформулировал понятие теплоемкости; в 1798 г. ме-
тодом крутильных весов определил среднюю плотность земного шара; разработал методику собирания, очистки и изучения газов; в 1766 г. получил в чистом виде водород и углекислый газ; в 1781 г. определил состав воздуха, а в 1784 г. — химический состав воды.

КАНТ И. (1724-1804)
— немецкий ученый и философ, родоначальник немецкой классической философии; разработал космогоническую гипотезу об образовании Солнечной системы из облака диффузного вещества; высказал догадку о существовании многих галактик; развил учение, согласно которому наше познание может неограниченно расширяться и углубляться, однако ему недоступно постижение «вещей в себе»; И.Кант выделял три вида знания — математику, теоретическое естествознание и метафизику, которые соответственно связаны с реализацией трех основных способностей познания — чувственности, рассудка и разума; считал, что необходимый характер утверждений науки, проявляющийся в описании всех явлений как закономерных, осуществляющих в пространстве и времени, обусловлен не свойствами самой реальности, а нашими способностями ее познания; утверждал, что стремление философии постигнуть мир как целое неминуемо приводит к противоречиям; сформулировал категорический императив, согласно которому всякая личность является ценной сама по себе и не может рассматриваться как средство; он полагал, что поступок будет моральным только в том случае, если он совершается из уважения к нравственному закону.

КАПИЦА П.Л. (1894-1984)
— отечественный физик, лауреат Нобелевской премии (1978); предложил импульсный метод получения сверхсильных магнитных полей; открыл сверхтекучесть жидкого гелия; его работы дали начало новому направлению исследований в области осуществления управляемого термоядерного синтеза; разработал установки для сжигания гелия и кислорода, имеющие большое практическое значение.

КАРНАП Р. (1891-1970)
— немецко-американский философ и логик, ведущий представитель логического позитивизма; автор работ по философии науки, по теории логического синтаксиса и семантики, по индуктивной логике и модальной логике; отстаивал идею о том, что современная философия должна представлять собой логический анализ языка науки.

КЕЙНС ДЖ. (1883-1946)
— английский экономист, государственный деятель, основоположник одного из ведущих направлений современной экономической мысли (кейнсианство); книга Дж.Кейнса «Общая теория занятости, процента и денег» (1936) совершила революцию в анализе экономики; в ней Дж.Кейнс показал, что в капиталистической системе нет автоматического механизма саморегуляции, экономика может долго оставаться в состоянии депрессии; обосновывал необходимость государственного регулирования рыночной экономики; значительные заслуги принадлежат ему также в разработке оснований теории вероятности; активно участвовал в различных общественных и государственных организациях.

(517)

КЕПЛЕР И. (1571-1630)
— немецкий астроном, открывший законы движения планет (законы Кеплера); в своих работах обосновывал и развивал гелиоцентрическое учение Н.Коперника; исследования И.Кеплера стали основой не только астрономии, но и физики нового времени; считался одним из крупнейших астрологов.

КЛАУЗИУС Р. (1822-1888)
— немецкий физик, один из основателей термодинамики и молекулярно-кинетической теории теплоты; совместно с У.Том-сопом сформулировал второе начало термодинамики; ввел понятия энтропии, идеального газа, длины свободного пробега молекулы; развивал идею о «тепловой смерти» Вселенной; его работы способствовали введению статистических методов в физику.

КЛЕРО А. (1713-1765)
— французский математик и астроном; ввел понятия криволинейного интеграла, полного дифференциала функции нескольких независимых переменных; разработал теорию движения Луны; провел исследование фигуры Земли; на основе изучения движения кометы Галлея определил момент ее предстоящего прохождения через перигелий.

КОЛЛИНГВУД Р. (1889-1943)
— английский философ и историк; большое внимание уделял методологическим проблемам исторического познания, автор фундаментального труда «Идея истории»; считал, что философия и история имеют общий предмет — исторически развивающееся человеческое мышление; историк изучает его, анализируя продукты духовной и материальной культуры, а философ — на основе истолкования данных самосознания и рефлексии.

КОЛУМБ Х. (1451-1506)
— мореплаватель, генуэзец по происхождению; после его открытий американские земли вошли в сферу географических представлений и стали активно осваиваться европейцами.

КОНТ О. (1798-1857)
— французский философ, один из основоположников позитивизма, основатель социологии; считал, что и наука, и философия должны изучать то, как происходят явления, а не стре-

(518)

миться постичь их причины; обосновывал идею возможности создания науки об обществе, построенной на столь же строгих основаниях, как и физика; им была построена иерархическая классификация наук, в основе которой лежали его представления о степени их абстрактности и сложности.

КОПЕРНИК Н. (1473-1543)
— польский астроном, врач, государственный деятель; создатель гелиоцентрической системы мира; его работы оказали огромное влияние на формирование мировоззрения нового времени.
КОРРЕНС К. (1864-1933)
— немецкий ботаник, одновременно с Х. Де Фризом и Э.Чермаком переоткрывший законы наследственности, установленные ранее Г.Менделем.

КУАЙНУ. (1908)
— американский философ, логик; известен как специалист в области философии математики, логического анализа языка науки и обыденного языка.

КУЛОНШ. (1736-1806)
— французский физик; наиболее известен исследованиями взаимодействия электрических зарядов и магнитных полюсов (закон Кулона); его именем названа единица количества электричества (кулон); изобрел крутильные весы, которые применил для измерения электрических и магнитных сил взаимодействия; его работы имели важное значение для создания теории электромагнитных явлений.

КУНТ. (1929)
— американский историк и философ науки, один из лидеров исторической школы в методологии и философии науки; его работы содействовали значительному расширению проблематики философии и методологии науки и укреплению связи между историей и методологией наук; широкую известность принесла ему книга «Структура научных революций» (1962), в которой он представил историю науки как смену нормальных и революционных периодов в ее развитии, как результат конкурентной борьбы между различными научными сообществами.

ЛАВУАЗЬЕА. (1743-1794)
— французский химик; его работы способствовали становлению химии как науки, основанной на точных измерениях; показал сложный состав атмосферного воздуха и впервые правильно истолковал явление горения как процесс соединения веществ с кислородом; совместно с французским военным инженером Ж.Менье показал, что вода — это соединение водорода и кислорода и синтезировал воду из водорода и кислорода; один
из основателей термохимии; ввел основные принципы химической номенклатуры, которые сохранились до нашего времени; своими исследованиями показал полную несостоятельность теории флогистона; во время Великой французской революции как сторонник конституционной монархии был казнен по приговору революционного трибунала.

ЛАГРАНЖ Ж. (1736-1813)
— французский математик и механик; ему принадлежат выдающиеся исследования по вопросам математического анализа, теории чисел, алгебре, дифференциальным уравнениям, астрономии, математической картографии; внес большой вклад в развитие вариационного исчисления, аналитической и теоретической механики.

ЛАЙЕЛЬ Ч. (1797-1875)
— английский естествоиспытатель, разработал учение об эволюционном изменении геологической поверхности под влиянием постоянных геологических факторов, действующих и в современную эпоху; в 1830-1833 гг. опубликовал главный труд «Основы геологии», эволюционные идеи которой оказали огромное воздействие не только на геологию, но и на естествознание в целом.

ЛАКАТОС И. (1922-1974)
— английский философ и историк науки, внесший значительный вклад в изучение закономерностей развития научного знания, методологию науки.

ЛАМАРК Ж. (1744-1829)
— французский естествоиспытатель, создатель первого целостного учения об эволюции органического мира; один из главных предшественников Ч.Дарвина; основные идеи изложены в книге «Философия зоологии» (1809); считал, что эволюция органической природы осуществляется в результате закрепления через наследование признаков, приобретенных организмом в ходе его развития.
ЛАМБЕРТ И. (1728-1777)
— немецкий математик, астроном, физик и философ; оказал влияние на взгляды И.Канта в области теории познания; автор идей о возможности построения универсального языка знаков.

ЛАНЖЕВЕН П. (1872-1946)
— французский физик и общественный деятель; его наиболее значительные исследования относятся к области теории магнитных явлений, применения идей статистической физики к изучению магнитных свойств вещества.

ЛАПЛАС П. (1749-1827)
— французский математик, астроном, физик; внес фундаментальный вклад в развитие теории вероятностей; большое значение имеют его работы по дифференциальным уравнениям, алгебре; заложил основы современной небесной механики, впервые последовательно построив её на основе механики Ньютона и закона всемирного тяготения; автор космогонической гипотезы об образовании Солнечной системы из вращающейся и сжимающейся газовой туманности (1796); с его именем связаны представления о необходимом характере протекания любых процессов в мире (лапласовская концепция детерминизма); много внимания уделял обоснованию необходимости широкого применения в науке вероятностных методов; после прихода к власти Наполеона I стал министром внутренних дел, а затем был назначен членом и вице-председателем сената.

ЛАРМОР ДЖ. (1857-1942)
— английский физик; в 1900 г. независимо от Лоренца пришел к релятивистским преобразованиям координат и времени и к релятивистской формуле сложения скоростей.

ЛАРОШФУКО Ф. де (1613-1680)
— герцог, французский писатель-моралист; широко известен как автор книги афоризмов «Размышления, или Моральные изречения и максимы».
ЛАУЭ М. фон (1879-1960)
— немецкий физик, доказал волновую природу рентгеновских лучей и построил теорию их дифракции; основоположник рентгеноструктурного анализа; лауреат Нобелевской премии (1914).

ЛЕВЕНГУК А. ван (1632-1723)
— голландский натураллист, основоположник научной микроскопии; изготовленные им оптические приспособления давали увеличение наблюдаемого объекта в 150-300 раз; впервые наблюдал части и органы более чем 200 видов растений и животных.

ЛЕВЕРЬЕ У. (1811-1877)
— французский астроном, независимо от Дж.Адамса вычислил положение неизвестной ранее планеты, названной впоследствии Нептуном.

ЛЕВИНСОН-ЛЕССИНГ Ф.Ю. (1861-1939)
— отечественный геолог и петрограф; автор многочисленных трудов по теоретической петрографии, кристаллолоэгии, минералогии, вулканологии, общей геологии, стратиграфии и палеонтологии, почвоведению и истории геологии; обосновал представление о петрографических формациях, дал первую рациональную химическую классификацию горных пород (1898).

ЛЕЙБНИЦ Г.В. (1646-1716)
— немецкий философ, математик, физик, правовед, историк, языковед, изобретатель; считал, что бытие непротиворечиво, что возможно существование бесчисленного множества непротиворечивых «миров»; существование данного мира имеет достаточное основание, поскольку он означал — полон, прост, характеризуется непрерывностью, всеобщей взаимосвязью, единообразием законов, всеобщей изменчивостью и развитием; мир, созданный Богом, состоит из бесчисленного количества психических монад, находящихся в гармонии друг с другом; считал, что человек обладая прирожденной способностью познания, познает мир, опираясь на опыт; придавал большое значение вероятностному знанию; в логике развил учение об анализе и синтезе, сформулировал закон достаточного основания, закон тождества, выдвинул идею разработки математической логи-
ки, идею о возможности машинного моделирования человеческих функций, важнейшей заслугой Г.Лейбница в математике является разработка (одновременно с И.Ньютоном и независимо от него) дифференциального и интегрального исчисления, сделал ряд важных открытий в алгебре, комбинаторике, геометрии; в физике открыл закон сохранения «живых сил», явившийся первой формулой закона сохранения энергии, имеет ряд важных результатов в теории упругости, теории колебаний; высказал мысль об эволюции Земли, обосновывал идею целостности органических систем; создал теорию исторического происхождения языков; изобрел уникальную для того времени счетную машину.

LENDE Э.Х. (1804-1865)
— отечественный физик и электротехник; установил так называемое правило Ленца для определения направления индуцированных токов; совместно с Б.С.Якоби дал методы расчета электромагнитов; обосновал закон теплового действия электрического тока, открытый Дж.Джоулем (закон Джоуля-Ленца).

LIBIH Ю. (1803-1873)
— немецкий химик, специалист в области органической химии; один из основателей агрохимии; создал научную школу; был президентом Баварской академии наук.

LIVINGSTON Д. (1813-1873)
— английский исследователь Африки; в его честь названы город в Замбии, горы в Восточной Африке, водопады на реке Конго.

LOBACHEVSKY Н.И. (1792-1856)
— русский математик, один из создателей неевклидовой геометрии; видный деятель университетского образования и народного просвещения; ректор Казанского университета (1827-1846).

LOMNOPOV M.V. (1711-1765)
— первый русский ученый-естественник мирового значения, один из основоположников физической химии, поэт, заложивший основы современного русского литературного языка, художник, историк, поборник отечественного просвещения и развития самостоятельной русской науки; по его проекту в 1755 г. был организован Московский университет.

(523)

ЛОРЕНЦ Х. (1853-1928)
— нидерландский физик, создатель электронной теории, основные положения которой сохранили свое значение вплоть до настоящего времени; автор классических работ по электродинамике движущихся сред; в 1904 г. ввел пространственно-временные преобразования (преобразования Лоренца), сыгравшие большую роль в создании теории относительности; лауреат Нобелевской премии (1902); организатор и председатель Сольвеевских конгрессов по физике (1911—1927).

ЛУНКЕВИЧ В.В. (1866-1941)
— отечественный биолог — популяризатор и историк естествознания; автор широко известной трехтомной работы по истории биологии «От Гераклита до Дарвина».

ЛЫСЕНКО Т.Д. (1898-1976)
— отечественный биолог и агроном; президент ВАСХНИЛ (1938—1956, 1961—1962); получил ряд значительных результатов в области агрономии; активно выступал против менделевской генетики; его деятельность нанесла большой ущерб развитию отечественной биологии и агрономии.

ЛЮТЕР М. (1483-1546)
— идеолог бургерской Реформации в Германии, основатель немецкого протестантизма; реформатор образования, языка, музыки; большое значение имел перевод Лютером Библии, в котором ему удалось утвердить нормы общенемецкого национального языка.

МАЙКЕЛЬСОН А. (1852-1931)
— американский физик; в 1881 г. экспериментально доказал и совместно с Э.У. Морли подтвердил с большой точностью независимость скорости света от скорости движения Земли; эти работы явились экспериментальным обоснованием специальной теории относительности; лауреат Нобелевской премии (1907).

МАКСВЕЛЛ ДЖ. (1831-1879)
— английский физик, создатель классической электродинамики; один из основоположников статистической физики; его работы привели к выявлению нового вида физической реальности — поля, а также к широкому изучению статистических закономерностей в поведении физических систем; они легли в основу представлений о фундаментальной роли полей и вероятностных отношений в современной картине мира.

МАЛЬПИГИ М. (1628-1694)
— итальянский биолог и врач один из основоположников микроскопической анатомии растений и животных; открыл капиллярное кровообращение.

МАЛЬТУС Т. (1766-1834)
— английский экономист, священник; один из основоположников демографии; в работе «Опыт о законе народонаселения...» (1798) впервые обратил внимание на то, что рост населения приводит к возрастающим трудностям в обеспечении его средствами существования, и поставил вопрос о необходимости регулирования рождаемости.

МАРКОВНИКОВ В.В. (1837-1904)
— русский химик; основные научные труды посвящены теории химического строения, исследованию химических свойств нефти.

МАХ Э. (1838-1916)
— австрийский физик и философ; изучал аэродинамические процессы, сопровождающие сверхзвуковой полет (в этой области именем Э. Маха
назван ряд величин и понятий — число Маха, конус Маха и др.; открыл ударную волну; предложил принцип, согласно которому движение тела по инерции является следствием его взаимодействия со всем веществом Вселенной (принцип Маха); его работы по истолкованию основных принципов физики оказали влияние на создание теории относительности; в своих философских исследованиях был непримиримым противником материализма, активно развивал философию позитивизма.

МЕНДЕЛЕЕВ Д.И. (1834-1907)
— русский химик, открывший периодический закон химических элементов (периодическая система Менделеева), разносторонний ученый, педагог, общественный деятель; автор фундаментальных работ по химии, химической технологии, физике, метрологии, воздухоплаванию, метеорологии, сельскому хозяйству, экономике, народному образованию; его именем назван один из химических элементов.

МЕНДЕЛЬ Г. (1822-1884)
— австрийский биолог, основоположник генетики; монах, с 1868 г. настоятель августинского монастыря в Брюнне (Австро-Венгрия); четко сформулировал законы наследования, построил теоретическую модель процесса наследования, одним из первых стал эффективно использовать в биологии и в естествознании в целом вероятностно-статистические методы.

МЕРКАТОР Г. (1512-1594)
— фламандский картограф; предложил математически обоснованные принципы построения карт, которые сохраняют свою ценность по настоящее время; исследуя земной магнетизм, вычислил координаты магнитного полюса.

МЕРТОН Р. (1910)
— американский социолог, представитель структурно-функционального направления в социологии; его работы посвящены теории и методологии структурного функционализма, социологии науки и
научного познания, изучению бирократии, социальной структуры общества; ему принадлежат также эмпирические исследования средств массовой коммуникации в США (радио, телевидение, кино, пресса).

МИЛЛЬ ДЖ. (1806-1873)
— английский философ, логик, экономист, общественный деятель; разрабатывал философию позитивизма, отстаивая фено-меналистическую трактовку науки; автор фундаментального труда «Система логики», в котором развивается индуктивистская трактовка логики как общей методологии науки; утверждал, что нравственные чувства и принципы являются результатами социального опыта; считал, что человек в своих действиях стремится к удовлетворению своих интересов и получению удовольствия, однако его эгоистические устремления корректируются общественными отношениями.

МИХАЙЛОВСКИЙ Н.К. (1842-1904)
— русский публицист, социолог, один из теоретиков народничества; в центре его историко-социологической концепции находится проблема развития личности, степень которого является мерилом прогресса; считал, что человечество в историческом процессе развивалось за счет дифференциации и разделения труда в обществе, что приводило к деградации человека, усилию антагонизма между личностью и обществом; утверждал, что в будущем человечество должно устранить это противостояние.

МОПЕРТЮИ П. (1698-1759)
— французский ученый, автор трудов по математике, астрономии, географии, биологии и философии; впервые сформулировал принцип наименьшего действия, имеющий большое значение для понимания физических процессов.

МОРГАН Л. (1818-1881)
— американский этнограф и археолог, историк первобытного общества; обосновал положение о роде как основной ячейке первобытного общества; раскрыл механизмы эволюции семьи и брака от групповых форм к
индивидуальным и развития собственности от коллективных форм к частным; разработал научную периодизацию первобытной истории; внес фундаментальный вклад в развитие этнографии и истории.

НАПОЛЕОН I (1769-1821)
— французский государственный деятель и полководец, первый консул Французской республики (1799—1804), император французов (1804—1814 и март-июнь 1815); он был чрезвычайно одаренным, работоспособным и волевым человеком; воспитанный на передовых идей французского Просвещения с воодушевлением воспринимал Великую французскую революцию; в 1792 г. вступил в Якобинский клуб; однако в дальнейшем его демократические настроения постепенно угасли; после того, как Наполеон был провозглашен императором, он уничтожил выборное самоуправление, независимость от правительства печать, заменив их жесткой административной системой; с 1799 г. в течение 16 лет продолжался период наполеоновских войн; началом разгрома армии Наполеона стало его поражение в России (1812), а завершился он вступлением в Париж войск антифранцузской коалиции (1815); последние 6 лет жизни он провел в изгнании на о. Св.Елены.

НЕЙМАН ДЖ. фон (1903-1957)
— американский математик; внес большой вклад в развитие математической логики, в создание теории игр, теории автоматов, первых ЭВМ, в разработку оснований квантовой механики; участвовал в создании первой атомной бомбы.

НОДЕН Ш. (1815-1899)
— французский ботаник, обнаруживший основные закономерности наследственности и предвосхитивший идеи естественного и искусственного отбора.

НЬЮКОМЕН Т. (1663-1729)
— английский изобретатель; построил паровой насос; одним из первых реализовал идею использования пара для получения механической работы.
НЬЮТОН И. (1643-1727)
— английский физик и математик, создавший теоретические основы механики и астрономии, открывший закон всемирного тяготения, разработавший (наряду с Г.Лейбницем) дифференциальное и интегральное исчисления, изобретатель зеркального телескопа и автор значительных экспериментальных работ по оптике; важнейшим его трудом является книга «Математические начала натуральной философии» (1687), в которой впервые была создана единая стройная система земной и небесной механики, ставшая основой всей классической физики и определившая стиль мышления в естествознании вплоть до XX в.

ОМ Г. (1787-1854)
— немецкий физик; основные труды относятся к изучению электричества, к кристаллооптике, акустике; установил основной закон электрической цепи (закон Ома) и дал его теоретическое обоснование.

ОППЕНГЕЙМЕР Р. (1904-1967)
— американский физик; главная область исследований — физика элементарных частиц, строение двухатомных молекул, природа космических лучей; возглавлял работы по созданию атомной бомбы (1939—1945); председатель генерального консультативного комитета Комиссии по атомной энергии США (1947—1953); в 1954 г. был снят со всех постов, связанных с проведением секретных работ и обвинен в «нелояльности».

ОСТВАЛЬД В. (1853-1932)
— немецкий физикохимик и философ; основные научные работы в области теории электролитической диссоциации; вместе с Я.Вант-Гоффом основал «Журнал физической химии» (1887); осуществил издание «Классики точных наук» (1889); развил концепцию «энергетизма», согласно которой единственным основанием всех процессов является энергия; лауреат Нобелевской премии (1909).

ПАВЛОВ И.П. (1849-1936)
— русский физиолог, внесший фундаментальный вклад в развитие современных представлений о высшей нервной деятельности и процессе пищеварения; его исследования оказали большое влияние на развитие биологии, медицины, психологии, педагогики, на общие представления о человеке; лауреат Нобелевской премии (1904).

ПАРСОНС Т. (1902-1979)
— американский социолог-теоретик, один из главных представителей структурно-функционального направления в социологии; считал, что характерными чертами социальных систем являются их символичность (использование языка, ценностей и т.п.), нормативность (следование ценностям и нормам) и волюнтаристичность; введенная им система понятий оказала значительное влияние на современную социологию.

ПАСТЕР Л. (1822-1895)
— французский микробиолог и химик, основоположник современной микробиологии и имуннологии; первый директор научно-исследовательского микробиологического института (Пастеровского института), созданного в 1888 г. на средства, собранные по международной подписке.

ПАУЛИ В. (1900-1958)
— швейцарский физик-теоретик, автор классических работ по квантовой механике; в 1925 г. сформулировал важнейший квантово-механический принцип (принцип Паули); вместе с П.Иорданом и В.Гейзенбергом заложил основы релятивистской квантовой теории поля (1929); выдвинул гипотезу о существовании нейтрино (1930—1931); автор ряда работ по истории и философии науки; лауреат Нобелевской премии (1945).

ПЕАНО ДЖ. (1858-1932)
— итальянский математик; наиболее известны его работы по формально-логическому обоснованию математики; разработал аксиоматику натурального ряда чисел.
ПИКОК А.
— современный английский биохимик и теолог; одним из важнейших направлений его исследований является проблематика «религия и наука»; автор многочисленных работ по этой теме, наиболее значительные из которых — «Творение и мир науки» (1979), «Теология для научного века» (1993).

ПИРСОН К. (1857-1936)
— английский математик, биолог, философ-позитивист; один из основоположников биометрии; основатель и издатель журнала «Биометрика» (1901—1936); внес значительный вклад в развитие математической статистики; в философии отстаивал идеи позитивизма, трактуя развитие науки лишь как средство для упорядочивания чувственного опыта.

ПИФАГОР (ок. 570 - ок. 500 до н.э.)
— древнегреческий философ, математик, религиозный и политический деятель; основатель пифагореизма — учения, согласно которому в основе всего сущего лежит число; ему приписывается введение в геометрию доказательства, первые попытки построения планиметрии, создание учения о подобии, доказательство теоремы, носящей его имя; основал религиозно-философское братство с ритуализированным уставом и общностью имущества, строгой секретностью и абсолютным авторитетом руководителя, главной задачей которого было распространение пифагореизма.

ПЛАНК М. (1858-1947)
— немецкий физик; наибольшее значение имели его работы по термодинамической теории излучения, на основе которых им была введена новая универсальная постоянная \(\hbar \) (постоянная Планка), названная M.Планком элементарным квантом действия; введение этой величины ознаменовало начало современной физики, открыло принципиально новые пути в познании микромира; уделял большое внимание философско-методологическим проблемам естествознания, резко выступал против позитивистского истолкования науки; лауреат Нобелевской премии (1918).
ПОЛАНИ М. (1891-1976)
— английский химик и философ; автор ряда оригинальных работ по философии и социологии науки, среди которых наиболее известна книга «Личностное знание».

ПОППЕР К. (1902)
— австро-английский философ и социолог; разработал концепцию критического рационализма как теорию роста научного знания, альтернативную взглядам неопозитивизма; ее основы были изложены в «Логике научного исследования» (1934); существенное развитие эти идеи получили в книгах «Предположения и опровержения» (1963) и «Объективное знание» (1972); исходит из того, что наука обладает самостоятельностью по отношению к другим сферам человеческой деятельности, а опровержимость знания является важнейшим критерием его научности; логика науки должна быть не логикой открытия, а логикой роста научного знания; его работы оказали большое влияние на развитие логики и методологии науки.

ПРИГОЖИН И. (1917)
— бельгийский физикохимик; известен своими трудами в области неравновесной термодинамики; один из создателей синергетики; автор ряда работ, посвященных философскому осмыслению современной науки, в которых даются оригинальные трактовки возникновения и функционирования сложных систем, самоорганизации, времени, случайности; лауреат Нобелевской премии (1977).

ПРИСТЛИ ДЖ. (1733-1804)
— английский химик, философ и общественный деятель; впервые получил хлористый водород, аммиак, втористый кремний, сернистый газ, окись углерода; почти одновременно со шведским химиком К.Шееле открыл кислород (1774); автор ряда работ по истории науки и проблемам методологии научного исследования; считал, что природа материальна и подчиняется неотвратимым, присущим ей законам, которые созданы божественным разумом, а сознание представляет собой свойство материи.

(531)

ПРОПП В.Я. (1895-1970)
Отечественный фольклорист; один из основателей современного историко-типологического и структурно-типологического изучения фольклора.

ПТОЛЕМЕЙ К. (II в.)
— древнегреческий ученый; разработал геоцентрическую систему мира, согласно которой все видимые перемещения небесных светил объяснялись их движением вокруг неподвижной Земли; основная его работа «Великое математическое построение астрономии в 13 книгах», арабизованное название «Альмагест»; на основе установленных им законов видимых движений небесных тел впервые появилась возможность предсказания их положения; эта книга оставалась непревзойденным образцом изложения астрономических знаний вплоть до появления работы Н.Коперника; широко известно также его сочинение «Руководство по географии».

ПУАНКАРЕ А. (1854-1912)
— французский математик; внес большой вклад в развитие теории дифференциальных уравнений, построил качественную теорию дифференциальных уравнений; ему принадлежат важные исследования в области топологии, теории функций, математической физики; автор сочинения «О динамике электрона» (1905, опубликовано в 1906), в котором независимо от А.Эйнштейна и одновременно с ним развил математические следствия «постулата относительности» в физике; оказал большое влияние на формирование интуиционистского обоснования математики; известен глубокими исследованиями по философским и методологическим проблемам науки.

ПУАССОН Л. (1777-1859)
— французский математик и механик; автор важных трудов по многим разделам математики, механики, математической физики: интегральному исчислению, исчислению конечных разностей, теории дифференциальных уравнений, теории вероятностей, аналитической механике, гидромеханике, теории упругости, небесной механике.

РАМБО А. (1842-1905)
— французский историк и государственный деятель; осо-
бое внимание уделял политической истории (главным образом Ви-
зантии, России, Германии), истории международных отношений; министр
народного просвещения (1896—1898).

РАНКЕ Л. фон (1795-1886)
— немецкий историк; автор многочисленных трудов по истории ев-
ропейских народов; большое внимание уделял обсуждению проблем мето-
dологии исторического исследования (главным образом относящихся к ра-
bоте с историческими источниками), придавая особое значение разработке
методических установок, обеспечивающих получение объективного зна-
ния.

РАССЕЛ Б. (1872-1970)
— английский философ, логик, математик, социолог, писатель, об-
щественный деятель; автор многочисленных работ по философии науки и
истории философии; основоположник философии логического анализа;
совместно с А.Уайтхедом основал направление логического обоснования
математики (Логицизма), написал трехтомный труд «Основания математи-
ки» (1910—1913), оказавший большое влияние на развитие математиче-
ской логики; один из первых обнаружил парадокс в теории множеств (па-
радокс Рассела), попытки устранения которого привели его к построению
оригинального варианта аксиоматической теории множеств (теории типов)
и к разработке программы сведения математики к логике; лауреат Нобе-
левской премии по литературе (1950); один из инициаторов Пагуошского
движения — движения ученых, выступающих за мир, разоружение и меж-
dународную безопасность.

РЕЙХЕНБАХ Х. (1891-1953)
— немецкий философ и логик, один из видных представителей логи-
ческого позитивизма; автор известных трудов по проблемам пространства,
времени, причинности, по логике квантовой механики.

РИККЕРТ Г. (1863-1936)
— немецкий философ, один из основателей баденской школы
неокантианства; большое внимание уделал философии и методологии
науки; все науки делил на естественные, главной задачей которых считал
выявление законов, и науки о культуре, которые должны заниматься описанием и пониманием единичных,

неповторимых явлений и событий; утверждал, что философия должна изучать систему ценностей, которые образуют особый вид реальности.

РОБЕСПЬЕР М. (1758-1794)
— французский юрист; депутат Генеральных штатов с 1789 г.; видный деятель Великой французской революции (1789—1793), один из вошедших якобинцев — представителей радикального политического направления во Франции того времени; после падения якобинской диктатуры был арестован и казнен.

РОЛСТОН Х.

РУЗВЕЛЬТ Ф.Д. (1882-1945)
— американский государственный деятель, президент США в 1933—1945 гг.; впервые в истории США был избран президентом на третий срок (1940), а затем на четвертый (1944); вступив на пост президента в 1933 г., принял ряд чрезвычайных мер по государственному регулированию экономики, которые способствовали выходу страны из экономического кризиса; проявил себя как реалистически мыслящий государственный деятель; внес значительный вклад в создание и укрепление антигитлеровской коалиции; придавал важное значение развитию послевоенного международного сотрудничества и созданию ООН.

САККЕРИ ДЖ. (1667-1733)
— итальянский ученый, иезуит; предпринял попытку доказать постулат Евклида о параллельных от противного, в результате чего фактиче-
ски открыл несколько утверждений неевклидовой геометрии, однако не смог истолковать значение полученных результатов.

СЕН-СИМОН К.А. (1760-1825)
— граф, французский мыслитель, социолог; высказывал идеи о необходимости построения научной социологии; утверждал, что развитие общества связано со сменой господствующих в нем философских и научных идей; определяющее значение в истории придавал экономической деятельности людей, формам собственности и взаимоотношениям классов; считал, что всемирная история представляет собой движение человечества от низших общественных форм к высшим, проходя стадии религиозного, метафизического и, наконец, научного мышления; предложил модель социально справедливого общества без эксплуатации на основе обязательного для всех труда и государственного планирования промышленного и сельскохозяйственного производства.

СЕЧЕНОВ И.М. (1829-1905)
— русский естествоиспытатель, основоположник отечественной физиологической школы и естественнонаучного направления в психологии; разработал и экспериментально обосновал учение о физиологических механизмах сознания и воли; считал, что все акты сознательной и бессознательной психической жизни являются рефлексами; содействовал развитию приложения идей дарвинизма к проблемам физиологии и психологии; опираясь на свою рефлекторную теорию, обосновывал познаваемость мира.

СКЛОДОВСКАЯ-КЮРИ М. (1867-1934)
— физик и химик, автор основополагающих работ в области радиоактивности; дважды лауреат Нобелевской премии (1903 — по физике, 1911 — по химии).

СМИТ А. (1723-1790)
— шотландский экономист и философ; благодаря его исследованиям политическая экономия превратилась в разработанную систему экономических знаний; внес фундаментальный вклад в развитие теории рыночной...
экономики; считал, что рыночная экономика обладает свойством саморегуляции и любое вмешательство в нее будет иметь негативные последствия для общества; важнейшая его работа — «Исследования о природе и причинах богатства» (1776).

СОКРАТ (470/469-399 до н.э.)
— древнегреческий философ; считал, что диалог является основным методом нахождения истины; резко выступал против догматизма; считал себя не учителем мудрости, а лишь человечком, способным пробуждать в других стремление к истрне; Сократ не излагал письменно своих взглядов; он был мудрецом, образ жизни и поведение которого производили большое впечатление на окружающих; в конце жизни за свои проповеди он был привлечен к суду и приговорен к смерти; отказавшись спасти бегством, так как это противоречило его учению о необходимости каждому гражданину быть законопослушным, приняв в тюрьме яд.

СОЛОН (640/635 - ок. 559 до н.э.)
— афинский политический деятель и социальный реформатор; его реформы способствовали ускорению ликвидации пережитков родового строя и господства родовой аристократии, заложили основы афинской рабовладельческой демократии; один из первых аттических поэтов; греческая традиция включает Солона в число «семи мудрецов».

СОРОКИН П.А. (1889-1968)
— русско-американский социолог; лидер правого крыла партии эсеров, после Февральской революции (1917) секретарь А.Керенского, главный редактор газеты «Воля народа»; с 1922 г. — в эмиграции; внес значительный вклад в развитие социологии; один из родоначальников теории социальной мобильности и социальной стратификации.

СОССЮР Ф. (1857-1913)
— швейцарский языковед; основатель структурной лингвистики; его «Курс общей лингвистики», изданный в 1916 г. уже после смерти автора, оказал огромное влияние на языкознание XX века; в нем он впервые пред-
ложил рассматривать язык как систему (структуру); его идеи активно используются в семиотике, антропологии, литературоиздании, эстетике.

СПЕНСЕР Г. (1820-1903)
— английский философ и социолог, один из родоначальников позитивизма, развивал учение о всеобщей эволюции, относящейся к природе, обществу, человеку; является основоположником органической школы в социологии, истолковывающей общество по аналогии с живым организмом; основным законом социального развития считал закон выживания наиболее приспособленных обществ, а дифференциацию общества считал важным фактором его приспособления к окружающей действительности; оказал значительное влияние на развитие позитивистской философии.

СПИНОЗА Б. (1632-1677)
— нидерландский философ; в своем стремлении к созданию целостной картины мира исходил из тождества Бога и природы, которую представлял как единую, вечную, бесконечную субстанцию, исключающую существование другого начала, и тем самым — как причину самой себя; считал, что все в мире, включая и поведение человека, причинно обусловлено и совершается по необходимости; был убежден, что все вещи одушевлены, хотя и в разной степени; считал возможным адекватное постижение реальности, которое осуществляется прежде всего посредством рационального познания, а также через интеллектуальную интуицию.

СТЕКЛОВ В.А. (1864-1926)
— отечественный математик; основное направление исследований — математическая физика и применение математических методов в естествознании; известен как историк науки, философ, писатель; им были написаны книги о М.В.Ломоносове, Г.Галилее, очерки и статьи о П.Л.Чебышеве, Н.И.Лобачевском, М.В.Остроградском, А.М.Ляпунове, А.А.Маркове, А.Пуанкаре, философская работа «Математика и ее значение для человечества»(1923); по его инициативе при Академии наук был создан Физико-
математический институт (1921); его имя носит Математический институт РАН.

СТЕФЕНСОН ДЖ. (1781-1848)
— английский конструктор и изобретатель, положивший начало развитию парового железнодорожного транспорта; начал заниматься строительством паровозов с 1814 г. В 1823 г. в Ньюкасле основал первый в мире паровозостроительный завод.

ТИМИРЯЗЕВ К.А. (1843-1920)
— русский естествоиспытатель-дарвинист, один из основоположников русской школы физиологии растений; основные исследования в области физиологии растений посвящены изучению процесса фотосинтеза; популяризатор и историк науки; автор книг «Жизнь растения», «Столетние итоги физиологии растений», «Основные черты истории развития биологии в XIX столетии», «Пробуждение естествознания в третий четверть век», «Главнейшие успехи ботаники в начале XX столетия».

ТОЙНБИ А. (1889-1975)
— английский историк и социолог; наибольшую известность имело его «Исследование истории» в 12 томах (1934—1961), в котором дано отображение развития человечества как круговорота локальных цивилизаций; полагал, что каждая цивилизация проходит стадии возникновения, роста, разложения и гибели; движущей силой развития цивилизации считал «творческое меньшинство»; утверждал, что интеллектуальная элита, неспособная решить очередную историческую проблему, превращается в господствующее меньшинство, навязывающее свою власть силой, а не авторитетом; прогресс человечества видел в его духовном совершенствовании, в движении к единой синкретической религии будущего, в отказе от меркантилистской философии, в осуществлении гармонии между человечком и природой.

ТОМСОН, лорд КЕЛЬВИН У. (1824-1907)
— английский физик, один из основателей термодинамики и кинетической теории газов, высказал гипотезу «тепловой смерти» Вселенной; президент Лондонского королевского общества в 1890—1895 гг.; за научные заслуги в 1892 г. получил титул лорда Кельвина.

ТОСКАНЕЛЛИ П. (1397-1482)
— итальянский ученый, гуманист, астроном; убежденный сторонник учения о шарообразности Земли; выдвинул идею о возможности достижения Индии западным путем.

ТОФФЛЕР А. (1928)

ТУЛМИН С. (1922)
— американский философ; разрабатывает эволюционистскую программу исследования науки; рассматривает науку как

совокупность научных дисциплин и профессиональных институтов; считает, что история науки — это смена стандартов рациональности и понимания, лежащих в основе научных теорий; утверждает, что развитие науки подобно биологической эволюции, в которой проявляется единство консерватизма и инноваций; на эволюцию научного содержания, по его мнению, влияют как внутривнутренние, так и внешние факторы.

ТУОРТ Ф. (1877-1950)
— английский микробиолог; автор важных работ по культивированию микроорганизмов; открыл вирус бактерий — бактериофаг (1915).

УАЙТХЕД А. (1861-1947)
— английский математик, логик и философ; совместно с Б.Расселом основал направление логического обоснования математики (логицизм),
написал трехтомный труд «Основания математики» (1910-1913), оказавший большое влияние на развитие математической логики.

УАТТ ДЖ. (1736-1819)
— английский изобретатель, создатель универсальной паровой машины; машина Уатта благодаря своей экономичности получила широкое распространение и сыграла огромную роль в переходе к машинному производству; ввел первую единицу мощности — лошадиную силу; его именем названа другая единица мощности — ватт.

УОЛЛЕС А. (1823-1913)
— английский натуралист, один из основателей зоогеографии; автор термина «дарвинизм»; одновременно с Ч.Дарвином разработал теорию естественного отбора; в протоколах лондонского Линнеевского общества 1 июля 1859 г. была опубликована по предложению Ч.Дарвина статья А.Уоллеса с изложением его концепции естественного отбора, а также собственная работа Ч.Дарвина с основными идеями теории эволюции.

ФАЛЕС (ок. 625-547 до н.э.)
— древнегреческий философ, по преданию один из «семи мудрецов», родоначальник античной и европейской философии и науки; основатель греческой астрономии и геометрии; пред-

сказал солнечное затмение (585 до н.э.), осуществил первые доказательства ряда геометрических утверждений.

ФАРАБИ А. (870-950)
— философ и ученый-энциклопедист Востока, крупнейший комментатор Аристотеля и Платона; его «Большой трактат о музыке» — важнейший источник сведений о музыке Востока и древнегреческой музыкальной системе; оказал большое влияние на развитие философии и науки.

ФЕЙЕРАБЕНД П. (1924)
— американский философ и методолог науки; считал, что развитие науки происходит через построение несоизмеримых, использующих раз-
ные методы и понятия, теорий; отстаивая позицию методологического плюрализма, считает, что существует множество равноправных типов знания; отрицает возможность универсального метода познания (методологический анархизм), обращаая внимание на то, что развитие знания предполагает отказ от старых методов; по его мнению, все традиции имеют равные права и должны иметь одинаковый доступ к центрам власти; наука как идеология научной элиты не должна отличаться в своих правах от религии, мифов и магии.

ФЕЙНМАН Р. (1918-1988)
— американский физик; основные труды по квантовой электродинамике, квантовой механике, статистической физике; разработал математический аппарат (диаграммы Фейнмана), сыгравший важную роль в развитии квантовой теории поля; широко известен своими лекциями по физике — «Фейнмановские лекции по физике»; лауреат Нобелевской премии (1965).

ФИЛИДОР Ф. (1726-1795)
— французский композитор, один из создателей французской комической оперы; был сильнейшим шахматистом Европы; его работа «Анализ шахматной игры» (1749) положила начало изучению теории шахмат.

ФИШЕР К. (1824-1907)
— немецкий историк философии; известен сочинением «История новой философии» в 10 томах; автор работ по истории литературы.

ФОМА АКВИНСКИЙ (1225/1226-1274)
— итальянский философ и теолог, систематизатор ортодоксальной схоластики; монах-доминиканец; основатель томизма; в основных трудах «Сумма теологии» и «Сумма против язычников» подвел итоги рационалистических теологических поисков зрелой схоластики, направленных на изложение вероучения в формах здравого смысла; его взгляды стали с XIV в. знаменем доминиканских схоластов, с XVI в. томизм энергично насаждается незуитами; его идеи легли в основу неотомизма, получившего официальный статус доктрины Ватикана с 1879 г. и являющегося одним из важнейших направлений современной теологии.
ФРАНК Ф. (1884-1966)
— австро-американский физик и философ; представитель неопозитивизма; занимался философским анализом исходных понятий физики, логическим анализом структуры физического знания, критикой витализма в биологии; в 30-е годы отходит от жестких неопозитивистских канонов; обращает внимание на существенную роль философии в науке, системе культуры; считает, что философия призвана связать абстрактные положения науки со здравым смыслом, вырабатывая целостный взгляд на мир, имеющий большое значение для человеческой деятельности; одну из важных задач философии науки видел в преодолении разрыва между гуманитарной и естественнонаучной областями культуры.

ФРЕГЕ Г. (1866-1927)
— немецкий логик, математик и философ; его труды во многом предопределили пути развития логики в XX в., оказали большое влияние на разработку оснований математики, ее философских проблем; заложил основы теории математического доказательства; ввел понятия логической функции, истинностного значения; впервые стал систематически использовать кванторы; основоположник логической семантики; в своем главном сочинении «Основные законы арифметики» (1893—1903) предложил систему формализованной арифметики, исходя из идеи возможности сведения математики к логике, дав тем самым начало логицистско-му направлению исследований по основаниям математики.

ФРЕЙД З. (1856-1939)
— австрийский невропатолог, психиатр и психолог, основоположник психоанализа; изучал физиологию и анатомию головного мозга, занимался проблемами неврозов; одним из пер-

вых начал изучать психологические аспекты развития сексуальности; в 1900-х годах выдвинул теорию, согласно которой в основе динамики человеческой психики лежит конфликт между сознанием и бессознательными влечениями; в работе «Я и Оно» (1923) развел учение о психологических структурах личности; считал, что вся история пронизана антагонизмом природного начала в человеке, сексуальных и агрессивных импульсов.
бессознательного и культуры с ее идеалами, нормами, требованиями; в работе «Неудовлетворенность в культуре» (1930) приходит к заключению, что прогресс культуры приводит к уменьшению человеческого счастья из-за растущего ограничения реализации природных желаний; его учение о бессознательном раскрыло новые возможности для понимания природы человека и общественных процессов, оказало большое влияние на философию, социологию, этнографию, психологию и психиатрию.

ФУРЬЕ Ш. (1772-1837)
— французский философ, социолог; разработал план организации общества будущего; отвергал социальную философию и экономические учения Просвещения, утверждая, что они противоречат опыту и оправдывают негодный общественный строй; полагал, что на смену обществу, переживающему глубокий кризис, должен прийти новый общественный строй, в котором не будет разрыва между городом и деревней, объединится все виды человеческой деятельности, а разнообразный и соревновательный труд будет формировать нового, всесторонне развитого человека; считал, что для успеха нового общества необходим рост производительности труда, крупное коллективное и механизированное сельское хозяйство, соединенное с промышленным производством; в его обществе сохранялись классы, частная собственность и нетрудовой доход; его учение оказало значительное влияние на развитие мировой социальной и философской мысли.

ХОМСКИЙ Н. (1928)
— американский лингвист; основоположник генеративного направления в лингвистике; заложил основы теории порождающих грамматик и теории формальных языков как раздела математической логики; развил концепцию, согласно которой существует набор правил, общий для всех человеческих языков — «универсальное грамматическое ядро», данное человеку от рождения; выдвинул программу изучения языка как средства исследования мышления.

ЧЕЙН Э. (1906-1979)
— английский биохимик; основные труды по микробным, антибактериальным веществам, механизму действия инсулина, технологии микробиологических производств; в 1939 г. возглавил работы по выделению и
очистке пенициллина, установил его химическое строение; лауреат Нобелевской премии (1945).

ШАМПОЛЬОН Ж. (1790-1832)
— французский ученый, основатель египтологии; в 1822 г. изложил основные принципы дешифровки и иероглифического письма древних египтян; установил последовательность развития египетского письма; им составлена первая грамматика и словарь египетского языка.

ШЛЕЙДЕН М. (1804-1881)
— немецкий ботаник; основные труды по анатомии и эмбриологии растений; обосновал онтогенетический подход к изучению морфологии растений; сыграл важную роль в создании клеточной теории; один из предшественников и защитников дарвинизма; в «Основах научной ботаники» (1842—1843) подверг резкой критике господствующие в то время натурфилософские взгляды; автор научно-популярных книг и сборников стихов.

ШЛЕЙХЕР А. (1821-1868)
— немецкий языковед; под влиянием учения Ч.Дарвина рассматривал язык как организм, который необходимо исследовать методами естественных наук; впервые поставил задачу установления общих законов развития языка; одним из первых начал изучать живые языки и диалекты; выдвинул идею деградации языков (одряхления, выветривания и разрушения).

ШЛИК М. (1882-1936)
— австрийский философ и физик; ведущий представитель раннего этапа логического позитивизма; основатель Венского кружка, в рамках которого активно разрабатывалась позитivistская философия науки; занимался проблемами философии науки, анализом пространства, времени, причинности, вероятности.

ШПЕНГЛЕР О. (1880-1936)
— немецкий философ, представитель «философии жизни», один из основоположников философии культуры; основное произ-
ведение «Закат Европы»(1918-1922); выступал против европоцентризма, «линейной» направленности исторического процесса, отстаивал идею множественности полноценных, но различных культур; каждая из восьми таких культур (египетская, индийская, вавилонская, китайская, греко-римская, западно-европейская и культура майя, ожидается также рождение русско-сибирской культуры) живет около тысячи лет, умирая культура превращается в цивилизацию, не способную порождать подлинные культурные ценности; именно эта стадия, по его мнению, характерна для Европы XX века; считал, что развитие техники имеет особые закономерности, подчеркивал ее большое влияние на природу и общество.

ШРЕДЕР Э. (1841-1902)
— немецкий математик и логик; дал систематическое изложение математической логики (как алгебры логики; ввел термин «исчисление высказываний»); занимался теорией алгоритмов.

ШРЁДИНГЕР Э. (1887-1961)
— австрийский физик, один из создателей квантовой механики; основные труды по математической физике, теории относительности, физике атома и биофизике; вывел основное уравнение нерелятивистской механики (уравнение Шрёдингера); доказал физическую тождественность развитой им волновой механики с «матричной механикой» В.Гейзенберга, М.Борна и П.Иордана; разработанный им математический формализм и введенная им волновая функция явились наиболее адекватным математическим аппаратом квантовой механики и ее применений; автор ряда интересных работ по философским проблемам физики и биологии; лауреат Нобелевской премии (1933).

ЭЙЛЕР Л. (1707-1783)
— математик, механик и физик; родился в Швейцарии, а с 1727 по 1741 г., с 1766 г. и до конца жизни жил в Петербурге; одна из отличительных сторон Л.Эйлера — его исключительная продуктивность (список его трудов содержит около 850 названий); круг его занятий был необыкновенно широк и охватывал все отдельы современной ему математики и механики, теорию упругости, математическую физику, оптику, теорию машин,
баллистику, страховое дело, теорию музыки и др.; невозможно перечислить все и сегодня употребляемые теоремы, методы и формулы Эйлера; его именем названы постоянная Эйлера, уравнение Эйлера, функция Эйлера, число Эйлера, интегралы Эйлера, углы Эйлера и др.

ЭЙНШТЕЙН А. (1879-1955)
— один из основоположников современной физики, создатель теории относительности, один из создателей квантовой теории и статистической физики, лауреат Нобелевской премии (1921); развил новые представления о пространстве и времени, их взаимосвязи, зависимости пространственно-временных отношений объекта от скорости его движения, от сил тяготения; раскрыл органическое единство массы и энергии; ввел представления о дискретной структуре поля излучения, заложив вместе с М.Планком основы квантовой физики; выдвинул идею построения единой теории поля, охватывающей все типы физических взаимодействий, которая в наше время успешно реализуется; его идеи радикально изменили картину мира, легли в основу современных представлений о динамичной, непрерывно расширяющейся Вселенной; ему принадлежат замечательные работы по философии и методологии науки; человек огромной культуры, высоких нравственных принципов, он решительно выступал против любых проявлений насилия, был активным антифашистом, борцом за мир.

ЭНГЕЛЬГАРДТ В.А. (1894-1984)
— отечественный биохимик; основные труды посвящены обмену органических фосфорных соединений, их роли в энергетике и физиологических функциях клетки, связи энергетических процессов и механических свойств мышечных белков; один из основателей молекулярной биологии в нашей стране.

ЭПИНУС Ф. (1724-1802)
— отечественный физик; опираясь на идеи Б.Франклина и И.Ньютона разработал теорию электрических и магнитных явлений, подчеркнув их сходство; впервые объяснил явления электростатической индукции, поляризации; открыл и изучил явление пироэлектричества в кри-
сталлах турмалина; разработал проект, принятый за основу при организа-
ции низшего и среднего образования в России.

ЯКОБСОН Р.О. (1896-1982)
— отечественный и американский языковед, литературовед; один из организаторов Московского, Пражского, Нью-Йоркского лингвистических
кружков; один из основоположников структурализма; его труды посвяще-
ны теоретической лингвистике, славянским языкам, поэтике.
ЛИТЕРАТУРА

Блок М. Апология истории или ремесло историка. М. 1986.
Бор Н. Атомная физика и человеческое познание. М. 1961.
Борн М. Физика в жизни моего поколения. М. 1963.
Бройль де Л. Революция в физике. М. 1965.
Вернадский В.И. Размышления натуралиста. В 2-х книгах. М. 1975—77.
Витгенштейн Л. Логико-философский трактат. М. 1958.
Вригт фон Г.Х. Логико-философские исследования. М. 1986.
В поисках теории развития науки. М. 1982.
Гейзенберг В. Физика и философия. Часть и целое. М. 1989.
Девятова С.В. Современное христианство и наука. М. 1994.
Капица П.Л. Эксперимент, теория, практика. М. 1981.
Коллингвуд Р.Дж. Идея истории. Автобиография. М. 1980.
Коммуникация в современной науке. М. 1976.
Кун Т. Структура научных революций. М. 1975.
Маркова Л.А. Наука, история и историография XIX—XX вв. М. 1987.
Наука о науке. Сборник статей. М.1966.
Научное открытие и его восприятие. М. 1971.
Поппер К. Логика и рост научного знания. М. 1983.
Пригожин И. От существующего к возникающему. М. 1985.
Пуанкаре А. О науке. М. 1983.
Рассел Б. Человеческое познание. М. 1957.
Структура и развитие науки. Сборник переводов. М. 1978.
Ученые о науке и ее развитии. М. 1971.
Фейерабенд П. Избранные труды по методологии науки. М. 1986.
Франк Ф. Философия науки. М. 1960.
Холтон Дж. Тематический анализ науки. М. 1981.
Школы в науке. М. 1977.
СОДЕРЖАНИЕ

РАЗДЕЛ I
Девятова С.В., Купцов В.И.
I. ОБРАЗ НАУКИ..7
1. Что такое наука?..7
2. Цель науки..7
3. Что производит наука?...9
4. Наука как процесс познания...15
5. Знание о чем?..23
6. Наука как социальный институт..25
7. Перспективы развития науки...30
Кузнецова Н.И.
II. ПРОБЛЕМЫ ВОЗНИКНОВЕНИЯ НАУКИ..38
1. Дата и место рождения науки...39
2. Миф, технология, наука...43
3. Проблема «европоцентризма»..47
4. На гребне «социальной волны»...50
5. Из плена времени !...53
Девятова С.В., Купцов В.И.
III. «БОЛЬШАЯ НАУКА»...57
1. Особенности современной науки..57
2. Наука и общество..60
Девятова С.В., Купцов В.И.
IV. ОБЩЕСТВО И НАУЧНО-ТЕХНИЧЕСКИЙ ПРОГРЕСС..................66
1. Технологические революции в истории человечества......................66
2. Три типа общества...67
3. Коренные изменения в «первый природе»...69
4. Радикальные преобразования во «второй природе».............................71
5. Влияние развития техники и технологии на жизнь людей 73

(547)
Девятова С.В.

V. ВЛИЯНИЕ НАУКИ НА РЕЛИГИОЗНОЕ ВОСПРИЯТИЕ МИРА

1. Отношение к религии в век НТП...78
2. Потребность в диалоге..83
3. Трудности во взаимоотношениях..84
4. Развитие представлений о мире и изменение «моделей» Бога 87
5. Современные теологические концепции развития и роли Бога в
 нём 89
6. Вероятностный мир и новые «модели» Бога.................................92
7. Возможности интеграции...97

РАЗДЕЛ II
Девятова С.В., Купцов В.И.

VI. НАУКА И ФИЛОСОФИЯ..103
1. Позиция механистов...105
2. Взгляды позитивистов...107
3. «Коперниканский поворот» в философии.................................113
4. Философия как аналитическая деятельность..............................118
5. Противостояние позитивизму...121

Девятова С.В., Купцов В.И.

VII. СТРУКТУРА НАУЧНОГО ЗНАНИЯ...125
1. Эмпирический и теоретический уровни знания.........................125
2. Философские основания науки..129
3. Взаимосвязь различных уровней знания.....................................134
4. Структура научной дисциплины..136
5. Характер научного знания и его функции.................................142

Никитина А.Г., Никитин Е.П.

VIII. ФУНКЦИИ НАУЧНОГО ИССЛЕДОВАНИЯ...............................145
1. «Знать, чтобы предвидеть»...145
2. Э. Мах о статусе описания в науке..146
3. «Основная модель научного объяснения»......................................149
4. Является ли процесс объяснения дедуктивным?.........................152
5. Какой вид объяснения главнее?..154
6. Почему колокола звонят на Пасху?..156
7. Объяснение без понимания, понимание без объяснения.............158
8. И все-таки понимание!...160
9. «Основная модель научного предвидения».................................165

10. Структура процесса предвидения..167
11. Характер прогноза..168
12. Основания предвидения...169

Девятова С.В., Купцов В.И.
IX. ОСОБЕННОСТИ ПРОЦЕССА НАУЧНОГО ПОЗНАНИЯ........172
1. В поисках логики открытия..172
2. Критические аргументы..179
3. От логики открытия к логике подтверждения..........................184
4. Фальсифицируемость как критерий научности.........................187
5. Концепция «третьего мира» К. Поппера......................................189
6. Научные революции, парадигмы и научные сообщества............193
7. Методология исследовательских программ...............................196

Розов М.А.
X. ТРАДИЦИИ И НОВАЦИИ В РАЗВИТИИ НАУКИ......................202
1. Традиционность науки и виды научных традиций......................203
2. Традиции и новации..216
3. Новации и взаимодействие традиций...224

Розов М.А.
XI. НАУЧНЫЕ РЕВОЛЮЦИИ...237
1. Новые теоретические концепции..237
2. Новые методы исследования...240
3. Открытие новых «миров»..244
4. Революции и традиции...248

Купцов В.И.

XII. ПРИРОДА ФУНДАМЕНТАЛЬНЫХ НАУЧНЫХ ОТКРЫТИЙ

253

1. Два рода открытий...253
2. Историческая обусловленность фундаментальных открытий 254
3. Гелиоцентрическая система Коперника..256
4. Геометрия Лобачевского..260
5. Открытие Менделя...267

Купцов В.И.

XIII. РЕДУКЦИОНИЗМ: ВОЗМОЖНОСТИ И ГРАНИЦЫ.....................274

1. Стремление к синтезу...274
2. Успехи редукционизма..275
3. Как обосновывается редукционизм?...276

Кезин А. В.

XIV. ИДЕАЛЫ НАУЧНОСТИ...294

1. Что такое идеал научности? ...294
2. Основания классических представлений о науке.......................296
3. Формы классического идеала...301
4. Основные направления критики..311
5. В поисках альтернатив...324

РАЗДЕЛ III

Кузнецова Н.И.

XV. СТАТУС И ПРОБЛЕМЫ ИСТОРИИ НАУКИ...............................333
1. Зачем нужна история науки? ..334
2. История науки тоже имеет свою историю335
3. «Как это было?» ...338
4. «Презентизм» и «антикваризм» — методологическая дилемма историко-научного познания 341
5. Открыл ли Колумб Америку? ..342
6. «Кимерийские тени» в истории познания348
7. Точку зрения Коллингууда ..350
8. Принцип дополнительности в историко-научном исследовании
9. Философия науки и история науки ..356

Маркова Л.А.

XVI. Социальные аспекты истории науки

1. Дискуссии интерналистов и экстерналистов 362
2. Общее основание в позициях методологических оппонентов 365
3. Естественно-научное теоретизирование и понятие социальности 368
4. Механизм действия социального заказа370
5. Философия в истории научных идей372
6. Разнообразные формы социальных отношений в истории науки 375
7. Микросоциологические исследования375
8. Научное сообщество ..382

Маркова Л.А.

XVII. Общие модели истории науки

1. Кумулятивистская модель ...389
2. Научные революции в истории науки398
3. «Кейс стадис» как метод исследования414

РАЗДЕЛ IV

Юдин Б.Г.
XVIII. НОРМЫ И ЦЕННОСТИ НАУЧНОГО СООБЩЕСТВА 429
1. Нормы и ценности науки...429
2. Наука и ценности общества...432
3. Нормативно-ценностная система научного сообщества.....437
4. Ученый и научное сообщество...441
5. Автономия науки..444

Юдин Б.Г.
XIX. ИНСТИТУАЛИЗАЦИЯ НАУКИ В ЦЕННОСТНОМ ИЗМЕРЕНИИ 449
1. Становление науки как социального института...............449
2. Наука и идеология Просвещения..452
3. Наука, техника, производство...454
4. Превращение науки в профессиональную сферу деятельности 458
5. Бремя социальной ответственности.................................463

Юдин Б.Г.
XX. ЭТИКА НАУКИ И ОТВЕТСТВЕННОСТЬ УЧЕНОГО..................469
1. Знание человека и для человека...469
2. Нормы научной деятельности..471
3. Этос науки..474
4. Социальная ответственность ученого.......................................476
5. Объективная логика развития науки и ответственность ученого 483
6. Социальные силы и ответственность ученого.......................486
7. Должна ли ограничиваться свобода исследований?...............488

Девятова СВ., Купцов В. И.

(551)
Учебная литература по гуманитарным и социальным дисциплинам для высшей школы готовится и издается при содействии Института «Открытое общество» (Фонд Сороса) в рамках программы «Высшее образование». Редакционный совет: В.И. Бахмин, Я.М. Бергер, Б.Ю. Гениева, Г.Г. Дилигенский, В.Д. Шадриков

BBK 87.3
Ф56

Научный редактор
академик РАО В.И. Купцов
Девятова С. В., Кезин А. В., Кузнецова Н. И., Купцов В. И., Маркова Л. А., Никитин Е. П., Никитина А. Г., Розов М. А., Юдин Б. Г.
Методическая обработка учебного пособия осуществлена
С. В. Девятовой и В. И. Купцовым

Философия и методология науки: Учеб. пособие

Ф 56 для студентов высших учебных заведений/Под ред.

Книга представляет собой пособие по общему курсу «Философия и методология науки», изучение которого предусмотрено для подготовки магистров и аспирантов всех специальностей. Оно охватывает основной комплекс проблем этой дисциплины, отражает современное состояние исследований в данной области. Ясный и образный язык работы, ее четкая структура, а также оригинальная методическая обработка делают эту книгу интересной и доступной широкому кругу читателей.

0503020901
ф Без объявл. BBK 87.3
06И(03) - 96

Учебное издание

ФИЛОСОФИЯ И МЕТОДОЛОГИЯ НАУКИ
Под ред. В. И. Купцова
Ведущий редактор Л. Н. Белая